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1. GENERAL OBJECTIVES 

The research under contract DAJA45-93-C-0046 and its 

modifications was aimed at the study of several mathematical 

models for ground freezing processes. 

The research started in September 1993 with Prof. Mario 

Primicerio as the principal investigator. During 1995 Prof. 

Primicerio had to quit the team, following his election to 

Mayor of Florence and he was replaced by Prof. Antonio Fasano. j 

The research has been carried out in close contact with        ! 

Dr. Y. Nakano at CRREL and included two visits at CRREL by Dr 

Federico Talamucci. The last one took place during one week in 

March/April   1996  and  was  very  useful   in  drawing  some 

conclusions and in pointing out further subjects which deserve       f 

further investigation. 

We  can  summarize  the  specific  objects of  the  research 

under the following statements: f 

(a) reviewing the extant models on ground freezing according to 

the classification in (i) models with a sharp interface between 

frozen and unfrozen region, (ii) models with a frozen fringe 

(b) examining the possibility of describing heaving with or 

without ice lens formation by means of models of class (i) 

(c) studying models of class (ii) under various degrees of 

approximation. 

Models of type (i) will be also referred to as "primary 

frost heave models", while ground freezing with frozen fringes 

(class (ii)J will be called "secondary frost 

g 

heave". 

r , ^ thS ^^ Stage ^ als° -eluded a study on thawin 
[1]. The work on classification of models has been very large 

and ls incorporated in Talamucci>s Doctoral Thesis [2] It will 

be used to produce a survey paper to be submitted to Surveys of 

Mathematics for Industry. 



2. PRIMARY FROST HEAVE MODELS 

The study of models with a sharp interface between frozen 

and unfrozen region has been undertaken under an innovative 

point of view. It has to be stressed that not all the models of 

this kind presented in the literature can be considered 

thermodynamically consistent. 

In [3] a correct model has been selected and treated under 

the assumption of quasi-steady temperature field, showing that 

it can account both for frost penetration and for lensing. The 

complete evolution problem with ice lens formation has been 

studied in [4], while the frost penetration case has been 

considered in [5] . In [6] a numerical work has been developed 

dealing with the situation described in [3] and showing the 

possible occurrence of frost penetration and of ice lensing. 

3. SECONDARY FROST HEAVE MODELS 

Then the research has been oriented towards the models 

with a frozen fringe, including the purely thermal-induced 

water flow mechanism, whose existence was experimentally- 

pointed out at CRREL by Y. Nakano. 

The amount of work done in this direction is quite 

remarkable, in particular considering the extreme complexity of 

the mathematical structure of the problem. We quote the study 

of quasi-steady solutions [7], [8], and a massive series of 

results concerning the cases of constant and time varying 

boundary date. It is particularly remarkable that it has been 

possible to give criteria to predict whether ice lensing or 

frost penetration is going to take place. 

Part of these results have been comunicated by Y. Nakano   / 



and F. Talamucci at the EUROMECH Conference 333, held in 

Montecatini, near Florence, in June 1995 and chaired by A. 

Fasano. 

The results achieved not only provide a sound mathematical 

basis to the frost heave model in which the water flow is 

driven by the complex thermodynamical evolution of the frozen 

fringe, but are also a useful tool to investigate the 

qualitative properties of the phenomenon. 

The enclosed report by F. Talamucci entitled '"A quasi- 

steady model for secondary frost heave in freezing soils" 

contains a detailed description of the frost heave model with a 

frozen fringe, encompassing the fundamental law stating that 

the flux intensity of migrating water is the sum of a Darcy- 

like term (i.e. the usual pressure driven flow) and of a term 

whose contribution is a flow in the direction opposite to the 

thermal gradient. 

This very large work (almost 100 pages) is organized in 

four sections. Sections 1 and 2 resume the main results already 

communicated in the previous interim reports and presented at 

the EUROMECH Conference, namely: the complete description of 

the mathematical model and the study of the case in which a 

constant heat flux is prescribed at the boundaries of the 

porous layer. Sections 3 and 4 present some new material, i.e. 

the analysis of the time dependent data, prescribed either as 

heat flux or as boundary temperatures. 

In all cases existence and uniqueness of the corresponding 

problem is proved and particular emphasis is given to the 

possible occurrence of the ice lensing phenomenon. From the 

mathematical point of view we have a set of partial 

differential equations for pressure, temperature, water flux in 

each of the three phases: the frozen and the unfrozen region 

and the intermediate layer in which ice and water coexist, i.e. 

the frozen fringe. The interfaces between these regions are 

free  boundaries  (i.e.  they  are  unknown)  and  the  peculiar 



behaviour of the problem is mainly due to the fact that the 

quantities listed above have to satisfy some constraints. The 

constraints are unilateral and they are responsible for 

discriminating between frost penetration and ice lens growth. 

All  this  material  will  be  reorganized  in  a series  of 

scientific papers for publication in the next future. 

4. CONCLUSIONS AND FURTHER PERSPECTIVES 

As a conclusion, we can say that the work performed under 

the contract has produced a significant step forward in 

understanding and modelling the frost heave phenomenon, taking 

into account some new factors like e.g. the thermal driven 

water flux in the frozen fringe and the possible rearrangements 

of the grains of the porous matrix during freezing, generating 

a change of porosity. 

From the mathematical point of view, a series of very 

difficult free boundary problems has been solved, providing in 

some cases also numerical results. Particularly valuable is the 

qualitative analysis, leading to the prediction of the type of 

evolution of the freezing process. 

Among the new problems to be investigated, if some 

cooperation can be continued, is a finer analysis of the 

distribution of thermal energy within the frozen fringe. This 

research area can be still a source of very interesting 

material both from the experimental and the theoretical point 

of view. 
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A QUASI-STEADY MODEL FOR SECONDARY FROST HEAVE 
IN FREEZING SOILS 

Federico Talamucci 

Dipartimento di Matematica "U. Dini" 

Viale Morgagni, 67/a 

50134 Firenze, ITALY 

Abstract. The subject of this paper is the mathematical investigation of a one-dimensional secondary 

frost heave model for a saturated soil with a frozen fringe. The water flux qw is driven by both thermal 

and   hydraulic   gradients;   the   volumetric   ice   content   v   is   a   known   decreasing   function   of  the 

temperature; the ice in the frozen fringe is at rest and at the atmospherice pressure; the occurring of the 

ice segregation process is determined by the value of the water pressure in the frozen fringe. 

The mathematical analysis of the model has been developed assuming that the temperature profile is 

linear in each region of the soil (quasi-steady approach) and that the porous matrix of the frozen fringe 

is undeformable. Besides the formation of a pure ice layer, we consider the possibility that the freezing 

front moves through the soil without a macroscopic break of the porous matrix (frost penetration). 

In sect. 1 and 2 we outline and discuss the equations of the model and we examine the case in which 

constant thermal fluxes a0, ax at the base and on the top of the soil are prescribed. The main result is 

concerned with the possibility of predicting the kind of process (lens formation, frost penetration or 

melting) which will take place on the basis of the knowledge of the data a0, aa and of the properties of 

the soil (thermal conductivities, densities, functions KVK2, u). A suitable way to present the result is 

to display in a (a^a^-plane the regions where lens formation or frost penetration occur. 

In sect. 3 we consider the general case when the assigned thermal fluxes a0, ar depend on time. The 

analysis of the model leads us to conclude that the change in time of the boundary fluxes may give rise 

to the formation of several lenses, in agreement with experimental observations. Indeed, if a0, ax verify 

certain conditions involving the soil properties the process of lens formation can alternate with frost 

penetration. 

In sect. 4 we examine the model when the temperatures are assigned at the boundaries of the soil. 

Conditions involving the boundary data and the known properties of the soil in order to discriminate 

the kind of process have been obtained also in this case. Moreover, taking boundary temperatures 

depending on time, the phenomenon of "banding" (formation of several lenses) is correctly simulated 

bv the model. 
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1. The mathematical model 

1.1 Basic assumptions 

Let us consider a sample of soil saturated with water (in both phases) and subjected to 

imposed gradients or temperatures on the top and on the bottom of the soil. 

We observe three different regions: an unfrozen part, from the bottom up to the freezing 

front, a frozen fringe with grains of soil, water and ice, and a frozen part, with ice and 
grains. 

In the frozen part pure segregated layers of ice can form (zee knees): in this case, we 

have that the upper boundary of the frozen fringe (base of the lens) is at rest. On'the 

other hand, if a macroscopic break in the soil does not occur, we can observe the 

penetration of the freezing front and the movement of the frozen fringe towards the base 
of the soil (frost penetration). 

Many models have been proposed in order to describe the phenomenon. 

We are going to give a mathematical description of the   freezing process following the 
model proposed in [3]. 

Let us take a vertical coordinate z, positive upwards, and choose the fixed base of the 
soil as z = 0. 

We consider 

zF(t) as the boundary between the unfrozen soil and the frozen fringe; 

zs(t) as the boundary between the frozen fringe and the frozen soil; 

zL(t)  as   the  upper  boundary of the  forming  (or just  formed)' ice layer,  that  is 
immediately over the frozen fringe 

zT(t) as the top of the soil. 

In order to take into account the coexistence of water and ice in the frozen fringe, we 

introduce the unknown „, such that «, is the volumetric ice content in a unit volume of 
mixture ice-water-soil. 

We have „ = 0 in the unfrozen soil, 0 < „ < 1 in the frozen fringe, „ = 1 in the frozen soil. 

We base our discussion on the following statements (see [3] and [4] for more details): 

(tfj) The process can be described by a one-dimensional model. 

(B2) The porous matrix in the unfrozen soil is undeformable as well as the skeleton of 



the frozen fringe ( porosity e  is constant in 0 < z < zs(t)). 

(H3) In the heat balance equations terms containing derivative of the temperature with 

respect to time and convective terms are neglected. 

(H4)    Pore ice in the frozen fringe is at rest with respect to the porous matrix (no 

regelation); moreover, there are not capillary interfacial effects between ice and water in 

the frozen fringe. 

(Hs) The water flux qw is given by the Darcy's law in the unfrozen soil: 

1w =   - K0 Q-Z  0 " Z ~ ZF(> 

with a constant hydraulic conductivity Ä"0, while in the frozen fringe the water is driven 

by a couple of gradients [5]: 

where the empirical functions K1 and K2  are properties of the soil. 

(H6) The water pressure pw at z = zs(t) attains in any case the value a > 0, that takes 

into account the overburden pressure loaded over the soil. At the base of the soil the 

water  pressure  is  the  atmospheric  one  and  pw  is   continous  through  the  boundary 

z = zs(t). 

(H7)       The   boundary   zF(t)   is   the   isotherm   T = 0   (T(zF(t),t) = 0);   moreover,   the 

temperature T is continuous with respect to the spatial coordinate z throughout the 

whole soil. 

(H8) The ice volumetric content v = v(T) (volume of ice in a unit volume of mixture) is 

a given decreasing function of the temperature T, such that   J/(0) = 0 (this means that at 

z = zF(t) there is no change of phase). 

(H9) The quantities fcu ,fcy, ki (thermal conductivities),   pw, /?,-, pe (specific densities) and 

L  (latent  heat  per unit  volume)   are  constant.   Suffixes   w,  //,  /,   «;,  i and s refer 

respectively to unfrozen soil, frozen fringe, frozen soil, water, ice and soil grains. On the 

other hand, the termal conductivity in the frozen fringe k** depends on the temperature 

T. Empirically, k^ is determined as a function of i/, that is in turn a function of T alone 

by virtue of hypothesis (H8). 

The set of equations which describe the freezing process, valid both in case of lens 

formation and in case of frost penetration, is the following: 



(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

dz\-dr1)=o 
6)(dT(z,ty 
9z\    dz    , 

iM^)=. 
q
fJ(z,t)=,-Kl(T(z,t))^2!l .K2(TM?IW1 

d(dT(z,t) 
dz\     dz = 0 

with the boundary conditions 

"(0,0 
~0l     - ~ao{t)   or, alternatively, (1.6) -aT(0'*) 

(1.6a) T(Q,t) = h(t) 

(L7) P«,(<M) = 0 

(1.8) 

(1.9) 

(1.10) 

lT(zF(t),t))± =T(zF(t),t) = 0 

dz -t"vTw,vl+=o 

«#(*F»0
+-«£(t) = o 

(L11)      bj2pW,<)]:t=o 

(1-12)      [r(z5(<),<)]+=o 

(L13)      W«f(*sW,<) - = (i - sKPwLzs(t) +1 - fcgg(*5(0,<)i ■ 
öz        J" 

(L14)      pj*s(0,0 = <r 

0 < z < zF(*) 

(unfrozen soil) 

> Zp(*) < z < z5(<) 

(frozen fringe) 

zs(t) < z < zT(t) 

(frozen soil) 

(1.15) ^r(<) = ^/J(z5(0J) - + £o(l - Vs){p. _ ^)%(0 

-3- 



(1.16)         £—— = -a^t)   or, alternatively, 

(1.16a)       T(zT(t),t) = g(t) 

with the initial conditions 

(1.17) z5(0) = 6 

(1.18) zT(0)=:H>b. 

The symbol [x]±  in (1.8), (1.9), (1.11)-(1.13) denotes the    "jump" of the quantity x 

passing through the height z: 

Ixjt -X+ -X~ =li™,x{z)-lirn_x(z) 
Z-Wz+ z->z 

(obviously, z-»z + and z-»z~ respectively mean left-hand and right-hand limit). 

In (1.9) and (1.13) the thermal conductivity k takes the appropriate index u, //, i or /. 

We comment briefly the set of equations (1.1)-(1.18). We refer to [9] for more details. 

Equations (1.1), (1-3), (1.5) are the heat balances in the hypotheses (H3) and (-ff10). We 

remark that the latent heat L does not appear in the heat balance (1.3), since we 

eliminated the derivative of the temperature T with respect to time t. In pratice, we are 

assuming that the energetic contribution due to the change of phase in the frozen fringe 

can be neglected, while the most remarkable effects of latent heat release are on the 

boundary z = zs(t), where (1.13) holds. 

Equations (1.2) and (1.4) come from (.ff5). Equations (1.6) and (1.16) prescribe the 

thermal fluxes -a0(t), —a^t) (where a0, ar > 0) at the base and on the top of the soil, 

respectively. Alternatively, the boundary temperatures h(t) > 0, g(t) < 0 at the 

extremities of the soil can be assigned (equations (1.6a) and (1.16a)). The initial 

conditions (1.17) and (1.18) give the initial position of the freezing front zs and the 

initial height .of the soil, respectively. Notice that the initial thickness of the frozen 

fringe is unknown, since the initial position of the isotherm zF is not given. 

Equations (1.7), (1.11) and (1.14) derive from (H6), while (1.8), (1.9) (heat balance at 

zF). (1.10) (mass balance at zF) and (1.12) come from (H7). 

-4- 



Equations (1.13) and (1.15) are respectively the heat and mass balances at zs (we put 
»s = »-(T(zs(t),t))). 

The unknow quantities of the problem are the temperature T(z,t), 0 < z < zT(t), the 

water pressure ,„(,,*), 0 < z < zs(t), the hydraulic fluxes £(*), 0 < z < zF(t) and ,#(,,,), 
zF(t) < * < zs(t), the free boundaries z = zF(t), z = zs(t) and z = zT(t). 

1-2 Temperature 

Integrating in each region of the soil (1.1), (1.3), (1.5) and taking into account of the 

boundary conditions (1.6), (1.8), (1.9), (1.12) e (1.16), or (1.6a), (1.8), (1.9), (1.12) and 

(1.16a) we get the following formulas for the temperature T(z,t). 

In the case of prescription of heat fluxes at the extremities of the soil (equations (1 6) 
and (1.16)) we have - ' 

h 
(1.19)        dT^K   I 

dz 

{ 
From (1.19) one gets: 

*//CT(*,0) 
kuao(t) 

■«i(«) 

0 < z < zF(t) 

zF(t) < z < zs{t) 

zs(t) <z< zT(t). 

G<z< zF(t) (unfrozen soil) 

(1.20)     . 

T(z,t)=-a0(t)((z-zF(t)) 

T(z,t) 

j      kJf{n)dr, = - kua0(t)(z - zF(t))       zF{t) < z < zs(t)     (frozen fringe) 

T(z,t) = - ai(t)(z - zs(t)) + Ts(t) Zs(t) < z < Zr(t)      {frozen soif} 

where Ts(t) = T(zs(t),t) satisfies 

Ts(t) 

(1-21) j      kff(V)dr,= -kuaQ(t)(zs(t)-zF(t)). 
0 

On the contrary, if we prescribe the temperatures at the base and on the top of the soil 

■5- 



(equations (1.6a)   (1.16a)), we have the following equations for T(z,t): 

(1.20a)    < 

T(z,i) -Zp   , , Zh(t) 0<z< zF(t) (unfrozen soil) 
zF{t) 

T(z,t) 

J       kff(T/)dT) = Zp
z        

Zkuh{t) zF{t)<z<zs{t)     (frozen fringe) 

0 
Z — Zrrit) Z—Zo(t) /r r, 

T{-Z^ = zs{t)-z^{t)Ts{t) + zT(t)-Zs(tf{t) Zsit) - Z - ZT{1)      (I™*™ SOtl) 

where Ts(t) is such that 

?s(t) 

(1.21a) J      k^dr, = ZF{i)
z-^s{t)kuh(t). 

0 

We remark that, as a matter of facts, we would have to introduce in the frozen soil 

further boundaries separating the layers of pure ice form the layers of soil grains 

saturated with ice. In [9] we showed that, if we assume that ki « k*, the "diffractions" at 

those boundaries can be eliminated and the temperature T in the frozen soil is a straight 

line with respect to z, as in (1.20) and in (1.20a). 

1.3 Water flux and pressure 

Integrating (1.2) and using (1.7) we obtain 

(1.22) Pw^t)=-q-^lz, 0<z<zF(t). 

On the other hand, if we neglect in the mass conservation equation in the frozen fringe, 

that is, under the hypotheses (H2) and (Hs) 

(1.23) e0(pi-pJ^^ + Pw-§^J(z,t) = Q, 

we neglect the term with the time derivative, in the spirit of the quasi-steady approach 

(.ffj), we get, taking also into account (1.10): 

(1.24) qfJ = qfJ(t) = ql(t), zp(t) < z < zs(t). 



We call qjt) the function that represents the hydraulic flux at each time t from the 
base of the soil z = 0 up to the boundary z = zs(t). 

From (1.13), (1.15), (1.19) and (1.24) we deduce the mass and heat balances at the front 

zs in the following form, in the case when the thermal fluxes «0 and a, are assigned: 

(1.25) Lpwqjt) = (1 - i>s)epJLzs(t) + kfax{t) - kua0(t). 

(1.26) PizT(t) = Pwqjt) + £o(i _ Vs){pi _ PwyZs{t) 

In a similar way, if the boundary temperatures h and g are prescribed, (1.26) still holds, 
while instead of (1.25) we have: 

(1-25«)    LPwqJt) = (1 - us)sPwLzs{t) - V^f^ä - ^ 
JzT{i)-zs{t)     zF{t) 

By means of (1.19) and (1.4), one finds the following formulas for the water pressure 
gradient in the frozen fringe: 

(1.27)     %<*'*>-_     1 (K2{T{z,t))k,Mt)       ,.\ 
dz K1(T(z,t))[     kff(T(z,t))      -IwWJ *F(t)<*<zs(t) 

in the case (1.6), (1.16); 

(1.27a)     fofr<)__     i (K2(T(z,t))k,Mt) \ 
dz Kx{T{z,t)) y kff(T(z,t))zF(t) ~ q™M) zF{t) < z < zs(t) 

in the case (1.6a), (1.16a). 

Let us assign now (1.6) and (1.16) and integrate (1.40), with the boundary condition 
(1.14); we get, making use also of the second equation of (1.19): 

(1.28)    p (zM = a+ / MaL ) PwK,t)     *+J j™ dt,, zF(t)<z<zs(t) 
T(z,t) 

Imposing the continuity of Pw through z = zF(t)  (condition (4.1.11)) and taking into 
account of (1.8), we find: 



r k(fW)    , qjt) 

o 

Analogously, if we prescribe (1.6a) and (4.1.16a), equations (1.28) and (1.29) becomes 

respectively: 

s) J«2W k h(t)   kif{rj) 
(1.28a)        pjz,t) = cr-j     -^> dr,, zF(t)<z<zs(t) 

T^^)-^%#* (V) r      2VU k Mt)    ffK" a (f\ 

w *F(<) 

Since  the  water  flux  depends  only  on  time,   we  can  achieve  a formula for  q    by 

evaluating (1.4) on z = zs(t): 

(1.30) 9Jt)=-K1(Ts(t))dp^f^   +^2(T5W)^|I 

or 

(1.30«)      ,jo=-KliTMfrtgM  +w^. 

1.4 The mathematical problem 

We have obtained in the case (1.6) and (1.16) the set of equations (1.21), (1.25), (1.26), 

(1.29) and (1.30) with the initial conditions (1.17) and (1.18); let us write again, by the 

sake of convenience, the equations: 



Zp{t) ~Zs(t) = Kkt)I   k"{r,)dT1 

(S/l) 

««;(<)= i)--vs)e'zs{t) + 
kfal(t)-kuao(t) 

LPW 

Pi*TW = Pwqjt) + e(l - „s)(Pi - PJzs(t) 

TS(t) 

+ /M™-^P + ^=° 
..W=-^(TSW)^^) +^mika, 

hj(Ts(t)) 
W) 

*s(0) = 6,    zr(0) = # > b. 

On the other hand, when the boundary temperatures are assigned (case (1.6a) and 

(1.16a)), the set of equations is given by (1.21a), (1.25a), (1.26), (1.29a) and (4.1.30a), 

together with the same initial conditions: 

('imp) 

rs(0 

PiW) = Pwqjt) + e(l - vs)(Pi - pjis(t) 

.+j 
kff(n) 

«M '•pit) 

*Jt)=-Kl(Ts(t)fP»YtM   +K2(Ts{t))-   *«A« 
*F(Wff(Ts(t)) 

k *s(0) = *,   *r(°) = -ff > * 

ÄemarÄ; 1.1. We will assume that at the boundary zs holds 

VMt) = Vt(ztt). 

-9- 



where V{ and Vs are the velocities of ice and soil grains, respectively. 

In that case, the heave rate is given by 

h = Vi(zs,t)+ =Va(zs,t) + 

and the porosity e + (zs,t) can be calculated   a posteriori by the formula (erf. [9]) 

The five equations of (S/z) and (Stmp) contain the same six unknown quantities zF(t), 
zs(t)^ zT(t); 9w(t), Ts(t) e pw(z,t). Nevertheless, we have not yet introduced a criterion in 

order to discriminate the case of lens formation from frost penetration. 

Before discussing such as question,  we need to describe the propertis of the given 

functions i/(T), K^T), K2(T) e kff(T). 

1.5 The functions v{T), K^T), K2(T) e kff(T) in the frozen fringe 

As for the volumetric ice content, we have to distinguish the two possibilities: 

*")    v(T) < 1    V T < 0 

ii)   3 T< 0 such that i>{T) = 1   forT < T. 

We will restrict our analysis examinating only the first case, remarking that the results 

we will get can be easily formulated for the second case. 

We assume for the function v to have the same properties (cfr. hypothesis (H6) and   [7]): 

(Hw) 0 < v{T) < 1 , ^22- < 0 ,   „(0) = 1,       Km    v{T) = 1 

If we extend the definition of v to the other regions of the soil by setting: 

v(T(z,t)) = 0       for      0 < z < zF(t) 

v{T(z,t)) = 1       for      zs(i) <z< zT(t), 
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We remark that „ is continuous through the boundary , = ,F(,), by virtue of (H6), while 

it is generally discontinuous through z = zs(t). 

The function K^T) is positive and decreasing to zero for T decresing (see [8]): 

(*„) ü:I(T)>0,   ^1>0, TlirnooK1(T) = G 

Furthermore, we assume that K2{T) is such that (see [6]): 

(*») K2(T)>0,     ^P->0,        lim    K2(T) = 0 
T-»-oo 

Let  us   comment   the  choise  (Hu).   On  the ground  of experimental  data,   K2  is  an 

increasing function of T. A question arises for the isotherm T = 0, that is the lower 

boundary of the frozen fringe: from one hand, K2 should achieve its maximum value 

since the temperature is decreasing with respect to x (see (1.20) and (1.20a))- on the 

other hand,  from  ,(0) = 0  we deduce that  only water is present  at  that  boundary 

Actually, supposing that the effects of the thermal gradient on the water flux are due to 

the simoltaneous presence of water and ice, it would be more appropriate to assume for 

K2{T)  to have a maximum for some  T < 0,  and to be decreasing for T > T   up  to 

*2(0) = 0. However, the temperature T  is so close to zero that a crescent "profile for 

A2(T) can be considered as a good approximation. 

The thermal conductivity in the frozen fringe can be written as (cfr. [1]): 

kff(T) = (1 - v{T))ekw + ev{T)k. + (1 - e)ks 

Since it is known that (see, for istance, [2]) *. > tw1 we deduce from (H1Q): 

(1.31)       ^H^e(k    * )^(r)     n 

The function kff(T) has its minimum for r = 0, where it assumes the value * , which 

represents the thermal conductivity of the unfrozen soil: 

ku = ^w + (l-e)ka 

For T decreasing to -«,, kff{T) tends to k} (thermal conductivity of the frozen soil): 
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kf = eki + (l-e)ks. 

1.6 Discriminating between lens formation and frost penetration 

The basic assumption we made about the water pressure is (1.14): at the boundary zs 

pw achieves, in any case, the positive value a depending on the kind of soil and on the 

overburden pressure. 

Let us assume that a is a constant: this corresponds, essentially, to neglect the variation 

of weight of the frozen part that leans on zs 

Derivating (1.14) with respect to time, one gets 

(1.32)        OPvMM is(t) +SPMM = o. 

In the spirit of the quasi-steady approach, we assume that the second term in previous 

fromula is negligible; so. (1.32) is approximated by 

(1.33)        !bty!MiM = t. 

Therefore, whenever zs(t) < 0, which is a condition associated with the process of frost 

penetration, it must be: 

(1.34) 3Pu,(^(0,0 = 0 frost penetration. 

On the other hand, during the process of lens formation the front z = zs is at rest (see 

[9]): 

zs(t) — 0, lens formation. 

Taking into account of the initial condition (1.17), we get 

(1.35) zs(t) = b, lens formation. 

We show now that, during the lens formation, the water pressure gradient must verify 

at z = z c 6S- 
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(1 1ft) dPw(b)t) 
{       / ~Q~Z     > 0, lens formation. 

indeed, if dPJb,T)/dz < 0 for some I during the process of lens formation, it must exist a 

point z in the frozen fringe so that pw(z,t)>„. This is in contradiction with the fact 

that we assign to the condition Pw = ff the property to separate the soil. Thus, (1.36) 
must hold. 

Let us now examinate the case when both the quantities in (1.33) vanish. 

When zs = 0 and zT = Vs(zs,t) is not zero, we have (see remark 1.1) 

e + (zs,t) = i 

that means that only ice is present immediately over the front z = zs. 

On the other hand, if it were icft) - dp„,(zg(*),Q     .   a were zs[t) _ _ = zT(t) = o for some ^  we wouM get 

9w(t) = 0 from (1.15). Assume that we prescribe the thermal fluxes a0 and av From 

(1.4), we see that this is possible onlv if a  - n   Tn that r*w       i„ *.      / 
^ iy n ao ~ u- in tnat case, ax is zero, too (see equation 

(1.25))   and  the  temperature  T(Z,J)  vanishes  everywhere.   Furthermore,  from   (1 22) 

(1.27) we would have Pw{z,t) = 0 for 0 < , < zs(t). Hence,the water pressure P   can not be 

continuous throu^z =;     owing to(1.14), unless . = 0. At this point, it is clear that 

when both zs and     ^/' ■  vanish, zT(t) can not be zero for a solution of (1.1)-(1.18). A 

similar argument holds in the case of precscriptions (1.6a), (1.16a). 

Let us now make the following important comment. From (1.27) (or (4 1 27a)) and from 

the properties of the functions K2(T) and kff{T) (Hn) and (4.1.31) we deduce that the 

water pressure gradient vanish at most in one point in the interval zF(t) < z < Zs(t). This 
entails that whenever 

(1.37)        dP*>(*s(*M> 
dz — 

holds, then the water pressure can not exceed the value a in any point. Thus (1 37) 

that is a necessary condition in both the cases of lens formation and frost penetration 

and that requires the knowledge of quantities calculated only on the front z = zs(t)   is 

also a sufficient condition in order to guarantee a consistent profile of the pressure \ 

(m the sense that pw < <r) in the whole frozen fringe. 

We remark that if (1.37) is satisfies, not only Pw(z,t) < „ in the frozen fringe, but P   is a 

non decreasing function of z for each fixed time i. 
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On  the ground of the previous  analysis,  we introduce  the following criterion C of 

discriminating between lens formation and frost penetration: 

I %W = 0 together with —"^ S'     > 0 o lens formation 

(C) 
dv  (z   t) 

zs(t) < 0 together with  —™   s''     = 0 ofrost penetrati ton 

Actually, if zs(t) = 0, then e + (zs,t) = 1; moreover, the water pressure verifies pw(z,t) < <r, 

z e [zF{t)yZS(t)]. On the other hand, if zs{t) < 0, the water pressure gradient at z = zs must 

vanish (see (1.33)). 

1.7 Further conditions 

We have finally to add the following constraints to the solutions of (S-) or (§tm ), in 

order to eliminate solutions which can not be accepted from a physical point of view. 

Such as conditions, whose meaning is evident, are, for each time t: 

(A) 

(1.38)       0 < zF(t) < zs(t) < zT(t) 

(1-39)      gw(t)>0. 
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2. Constant thermal fluxes at the boundaries 

In sections 2 and 3 we will discuss the solvability of system (S/|). We will investigate the 
following points: 

- thermal fluxes given at the boundaries of the soil as costant, in the case of lens 

formation (par. 2.1) and of frost penetration (par. 2.2); 

- thermal fluxes at the boundaries given as functions of time (sect. 3), with special 

attention to the transition processes from one phenomenon to the other (par. 3.2). 

2.1 Lens formation; aQ, ax constant 

Let us assign the thermal fluxes (1.6) and (1.16) by taking *0 and a, as constant and 

consider the system (S/|) in the case of lens formation. Taking into occunt of (1.35), the 
set of equations to be solved is: 

TS(t) 
f{2-l) ZF(t) = k^J     *//(*)rf7 + * 

(2.2)        q 

(sfi) l (2-3) 

0 

T5(0 
1wzFJi) ,     f      K2(Tl)-ckff{r}) °+-tr+ >M 

(2.4) 9w = _ Kl(Ts(t)f
P^/tht)       K^T^l 

1(2.5) PizT(t) = Pwqw 

where 

(2.6) ;(a0>al) 
Vl-^O qw 

LPwkuao     ~ kua0 

The unknown quantlties in (S*) are the boundaries ,F(«), ,r(0, the temperature Ts(t), 

the water flux qJt) and the water pressure pw(zs(t),t): the initial condition is (1.18): 
zT(Q) = H>b. 
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Moreover, the criterion (C) introduced in par. 1.7 imposes 

Conditions (A) (equations (1.38) and (1.39)) reduce to 

(2.8) kfai-kuao>0 

(2.9) 0<zF(t)<b. 

By using (2.1), we see that (2.9) is equivalent to 

TS 

(2.10) -kua0b<J    kff(r,)dr,<0. 
0 

In particular: 

TS 

zp = 0    if and only if      /    kfJrfidr] = — kua0b; 

(2.11) 

zF = b    if and only if     Ts = 0. 

Condition (2.7) can be written in the following way: 

(2.12) ckff(Ts)<K2(Ts),   c>0. 

In other words, we have to find Ts satisfying the equation 

(2.13) G(T5) = 0 

where 

K2{T}) -ckff{n) (2.14)        0W = „ + c%^+_L/*„(„„ Uj?Mf 
(•)) 

drj 

and such that (2.10) and   (2.12) are satisfied. 
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It is immediately seen that a solution of (2.13) is constant, since no term depends on 

time; furthermore, the solution Ts can not be positive, otherwise condition (2 10) would 
be violated. 

Consider now the function K2{s) - ckfJ(s), s < 0, c > 0. 

By virtue of the properties of the functions i^and kffis) (see (En) and (1.31) in par 

1.6), ,t » eashly seen that for any c 6 (o,tf2(0)Au) there exists exactly one temperature 
Ts(c) such that 

(2.15) K2(T*s(c)) = ckff(T*s(c)). 

Moreover, we have: 

lim    T*s(c) = - oo 

(2.16) ,C^° 

K2(0)s 

Owing to (2.12), the solution Ts of (2.13) has to be searehed in the interval [Tile) 0l 

w.th ce(0,*2(0)AJ. The lenght of that interva. depends obvionsly on the data „   '!' 
through c. Furthermore: °'    1 

—Q-Z— = 0 if and only if Ts = T*s(c). 

If c > K2(0)/ku, there are not solutions of (2.13) so that (2.12) is fulfilled 

On the other hand, condition (2.10) means that the solution Ts of (2.13) must be in the 

interval |T5(a0),oJ, where r*(«0) is the one value such that 

I* 

(2.17) -kua0b= J   kfJ(v)dV. 

0 

Since /*„(„)<*, is an increasing function of s, it is easy to verify that to every a0 there 

corresponds a unique Tb
s(a0); moreover: 

(2J8)   ««yVoo^°ö)=-~- 
We remark that zF = 0 if and only if Ts = Tb

s(a0). 
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In order to discuss the solvability of (2.13), we must consider the two possibilities: 

0      T*s(c(a0,ai)) > Tb
s(a0) 

ii)    n(c(a0,a1))<r|K) 

We call (T) the set of equations (2.10), (2.12) and (2.13) and we state the following 

LEMMA 2.1.   System (T) has exactly one solution Ts if and only if 

(2.19) G(Tj(c(a0,a1)) < 0   in the case i), 

(2.20) G(Tb
s(a0)) < 0 in the case ii). 

Moreover, Ts is constant. 

Dim. 

By derivating (2.14) with respect to s one finds: 

<?'(«) = 4 
(KQ(K2-ckff(s)) + ckf^K^s) 

K0 K^s) 

We see that G'{s) > 0 iiT*s(c) <s<0. Furthermore, G(0) = a  +  c ^6 > 0. The solution 

Ts of (T) must lie in the interval [T£,0], where Tt = T^a0,ax) = max|T|(a0),T^(c(a0,a1)) j. 

We deduce that there exists a unique solution of (T) if and only if G(Tf) < 0, that is 

equivalent to (2.19) and (2.20). 

Notice   that   in    (2.19)   equality   holds    (in   that   case   the   solution   of   (2.13)   is 
Ts — Ts(c(aoiai))) if an<i only ^ *he water pressure gradient computed at z = b vanishes. 

In (2.20) equality holds if and only if zF = 0 (the base of the soil and the lower boundary 

of the frozen fringe are the same line). In that case, the solution of (T) is obviously 

Ts = Tb
s(a0).       D 

Our next goal is to locate the points (a,,,^) on the quarter of plane {(a^a^: a0 > 0,ax > 0} 

such that condition (2.19) or (2.20) of the previous lemma is verified. The region that 

we will single out and that we call 1, will correspond to all the pairs of thermal fluxes 

(«o,«*!) and only those such that the process of lens formation is induced. 

Since ce(0,K2(0)/ku). the region 1 is contained in the angle ß: 
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(2.21) lCß = |(a0,al): ao > 0, kua0 < kfa, < kuaj(l+^K2(0))\ 

We start by remarking that the distinction between case i) and case ii) is nothing but a 

partition in the angle ß. Indeed, let us consider the set T*««^)) = Tb
s(a0), which we 

can write, owing to (2.17), as 

T*s(c(aoiai)) 
(2.22)    (C) -kua0b=J kff(r,)dV 

0 

It is easy to check, by using (2.16), that the set (C) is a curve dividing ß into two parts, 

corresponding to the sets Tj(c(a0,ax)) $ Tb
s(a0). 

As a matter af fact, let us take the half-straight lines starting from the origin 

(2.23) rc = {(a,,,«!): «0 > 0, A/ttl = kua0(l + pwLc)j, 

with 0 < c < K2(0)/ku. Going along one of those lines and letting «0 grow from zero to 

+ oo, we see that the quantity T*s is a constant negative value, while r|(«0) decreases 

monotonically from down to -oo (cfr. (2.17)). Hence, there exists a unique value «0 

such that the equality T*s(c) = T^(«0) holds; in other words, there is a unique point of 

intersection P{c) between the straight line corresponding to c and the set C. By (2.16) 
and (2.18) we have 

(2.24) Um.    |P(c)-0| = oo, Urn \P(c)-0\=Q 

where the point O is the origin of axes in the (a^a^-plane. 

Moreover, since T*s(c) is an increasing function of c, we see that, as c increases from zero 

up to K2(0)/ku, the distance | P{c) - O \ decreases monotonically from oo to zero. 
Let us denote now by 

(2.25) %1 = {(ttojai) e ß- T*s(c(a0,ai)) < T|(«0)} 

(2.26) ^2={(«o,<*i)eß--T*s(c(a0,ai))>Tb
s(a0)} 
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the two parts separated by the curve C. The region ■% is bounded   by the straight line 
kfai = kuao fr°m below and by the curve C from above, while 9k2 is bounded by the 

curve C from below and by the straight line kfar = kua0(l + PwLK2(0)/ku) from above. 

By virtue of lemma 2.1 we can say that the process of lens formation occurs if and only 

if 

(2.27) 
Tbs 
f   K2{r{) -ckff(t]) 

a+J        KM 
0 

-dr]<0 

whenever (a0'ai) e 9*>i, 

(2.28) T}(c)+- s y 
whenever (a0>al) e %2- 

If we call 

T*s(c) 
f       K2i

rl) - ckfJr)) 

J       —KW-**^ 
0 

^li£ = {(a0,a1)€%1: (4.2.27) is verified] 

^2 l = {(oeo>ai)£'&v (4.2.28) is verified} 

we may conclude that I = ^^U^^ is the part of the angle ß where lens formation 

occurs. 

We begin with the following result. 

LEMMA   2.2. Let Tff < 0 be such that 

(Z29)    '+/^=" 
0 

then there exists a unique c,e(0, K2(0)/ku) with the property that 

T*s(
cl) 

(2.30)        a+j       ^ rf, = 0. 

0 

Dim. We first remark Jhat the function 

0 
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is strictly increasing and fl(0) > 0. Thus, the assumption (2.29) is  equivalent to 

(2.31)        Jim    f1(s) = C<o. 

Indeed, if (2.31) holds, there is a unique Ta such that (2.29) holds and viceversa. 

Let us now consider the family of functions depending on the paramet« er c: 

0 
fc(s)-a+l _^_ dr]i    v,<0,       0<c<K2(0)/ku. 

We have: 

(2.32) /c(«) >/!(«),       lim+fc(s) = fl(s)   Vs<0 (punctually). 

Moreover, according to the properties of K2 and kff and since 

dfc(*) _ K2Js) ~ckff(s) 

we see that for any c fixed in [0,*2(0)/*J, the function fc(s) achieves its minimum value 

for s = T*(c), where T*s(c) is defined by (2.15): 

(2.33) fc(s) > /c(T*(c))    V, < 0, c 6 [0,Jf2(0)/JfcJ. 

Suppose, contrary to our claims, that /C(T* (c)) > 0 Vce(0, K2(0)/kJ and consider the 
case (. > - oo. 

By virtue of (2.31), once we have fixed 0 < e < - i/2 we could find ?< o such that 

/l(S)<< + e. 

On the other hand, by (2.32) we could find c small enough that 

0</?(S)-/1(S)<c. 
Therefore: 

/?(*)<« + 2e<0. 
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On the contrary, from (2.33) we deduce: 

and we obtail a contradiction. The case £ = - oo can be proved with slight modifications. 

Thus, we may say that there exists c e (0, K2(0)/ku) such that /- (Tg(c)) < 0. 

Since the function 

K{ri"      drj,      c € (0, K2(0)/kJ 

0 

is continuous and verifies 

T*s(c) 

B(K2(0)/ku) = a > 0, B(c) < 0, B'(c) = - J     -j^dr, > 0 per c e (0, K2(0)/ku], 

0 

we conlcude that there exists a unique c(ece (0, K2(0)/ku) with the property 5(c;) = 0, 

and the lemma is proved. D 

The following result locates the region L on the (a0,aj)-plane. 

PROPOSITION 2.1. 

i) If 

(2.34)        a+ J ^jjdr)>0       V^e(-oo,0), 

0 

then L = 0. 

ii) //3T(r<0 such that 

0 

then i, is the non-empty set bounded by 

(2.35) dl = {(a0,ai) : kf0l = kua0 , a0 > S0 } U Cj U C2 
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e 

where a0 is defined by 

(2.36) -W=/'^ 

0 

and 

(2.37) e, = {(«„,«,):  „ + / ° ^^, = 0 , 0 < c < «,} 
o * 

= 0,0 < C < C;j 

are too meS contained in %a  <mrf %2 respectively; in (2.37) ana7 m (2.38) c, is & 
vafce defined in lemma 2.1 arcd verifying (2.30). 

£>«m. Case i) is immediately proved: if (2.34) holds, equation (2.13) can not have non- 

positive solutions and the condition (2.10) is violated. Hence 1 = 0. 
Let us now pass to case «). 

We consider once again the straight lines (2.23). We know that there exists a unique 
point P{c) whose coordinates (ä0,ä{) are 

Ts(c(5o>si)) 

(2-39) -kuäQb= J kff(r,)dr,,    ä1=kuä0(l+PwLc)   ,   per   0 < c < Zjß. 
0 " 

Conventionally, we can assume that äo(0) = ä1(0)= +oo, recalling that the straight line 
r0 : kfax = kua0 is an asymptote for the curve C. 

We examinate first the region 3^ Evaluating the quantity on the left-hand side in the 

inequality (2.27) along one of the lines rc, where c is constant, we get: 

^ F^=^r^K^^ K,«!)^, o<c<^) 
By virtue of assumption (2.29), lemma 2.2 and remarking that  £F(ä0(c),c) > 0, we have 

(2.41)        /,moF(ao,c)= cr>0 Vce[0,K2(Q)/ku} 
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<0    ifü<c<cl 

(2.42)        F(ä0(c),c)\   =0    ifc = Cl 

Taking into account of (2.41), (2.42) and noticing that F(aQ,Q) decreases along the lines 

r„, that is ' ci 

(2-43) ^(ao,c)<0,    («0,^)6^ 

we conclude that whenever (aQ.a-^) e %l5 if ct < c < K2(0)/ku, there are not any points 

(a0,a1) on the straight line rc such that (2.27) is verified. In other words: 

(2.44)      ali£nrc=0,     cl<c<^l. 

On the other hand, when 0 < c < ct, we have that (2.27) evaluated on each line rc is 

valid if a0 is such that 

(2.45) a0 G [50(c),50(c)) , 

where 50(c) is the value (which exists unique owing to the continuity of the function F 

with respect to a0 and to the formulas (2.42)) with the property 

(2.46) F(a0(c),c) = 0,    0 < c < c, 

This is equivalent to state that for 0 < c < c, we have 

(2.47) ^ £ n rc  = {(a0,ai): 50(c) <a0< ä0(c) , kfat = kuaQ(l + pwLc)} 

When c = 0, it is 50(0) = + co, 50(c) = a0 , where 30 satisfies (2.36). Thus: 

%i,Cnro- \(ao;ai): ao > 30: kfai = kuaoj- 

Obviously 
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The set of points in %x satisfying (2.46), that is 

{("0>"i) e a.x: a0 = s0(c) , A/Qri = kuE0(c)kua0(l+pwLc), 0 < c < c,}, 

make a curve Cx that is the boundary of the set «R,   £. 

The curve Cx matches C defined by (2.22) only at the point P = (Äb,&1) with coordinates 

(2.48) - kua0b = J      kff(r,)dr,,      kfa, = kua0((l + PwLCl) 
0 

and the straight line kfa, = kua0 at a0 = a0, where   S0 is defined by (2.36). Moreover, the 

tangent to the curve C, at P alia curva Cx is the straight line 

rc, = {K^I): <*O > 0, kfa, = kuaQ(l + PwLCl)). 

We will examinate now the region *2. In order to find the points („0,ttl) in ^2 which 

have the property (2.28), we check the values achieved by the auxiliary function H that 

we are going to define, along each of the straight lines rc, 0 < c < K2(Q)/ku, where TUc) is 
constant: 

/TT*   /       \ 

We can exclude the value c = 0, since the straight line rQ : kfa, = kua0 verifies ^2 n r0 = 0. 

We have to find the part of %2 where G(a0,c) < 0, owing to (2.28). 

It is immediately seen that: 

(2.50) E(äo,c) = F(ä0(e),c) 0 < c < K(0)/ku. 

moreover, along one of the line rc we have: 

(2-51) , Ji™ G(of0,c)=+oo 0<c<K (0)/k 

Arguing as in the case i), we conclude that whenever (a0,Ql)e%2: 
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(2.52)     < 

if C[<c < K2/ku, then H(aQ,c) > 0; 

if c = c{) then H(a0;c) = 0; 

if 0 < c < C[ then H(a0,c) < 0 when 

(2.53) a0e[a0(c),a0(c)], 

where a0(c) has the property 

(2.54) #(l0(c),c) = 0,     0 < c < C[. 

The existence and the uniqueness of 50(c), 0 < c < c7 come form the continuity of the 

function H and from (2.51) and (2.52). Thus, in 3k2 we have: 

\ c n rc  = 0,    if c, < c < A'2/£u 

%, ,£ n rc = {(ao>ai): ao(c) < ao < Qo(c) > ^/ai = *V*0(1 + PwLc) } , if 0 < C < C,. 

Equation (2.54) defines a curve (C2) 

{(<*o;ai)e ^2: ao = ^o(c) J *7ai = * J^ofcX1 + ^^^c), 0 < c < C/| 

that is the one we defined in (2.38). D 

Remark 2.1. The point P (see (2.48)) lies on the curve C2. Furthermore: 

(2.55) ä0(c,) = a0(cz) = ä0(c/) = a0. 

(2.56) /im   50(c)=+oo. 
c-»0 + 

If we denote by P, Px and P2 the points 

^)={äoW, fä0(c)(l + PwLc) 
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(2.57) \(c)={ä0(c),f^ä0(c)(l + PwLc)j 

2(c) = {^0(c),-^%(c)(l+PwLc)j 

for each c in the range 0 < c < C| (conventionallly, P2(0) = + oo), we see that \Px(c)-0\ 

mcreasse if c increases, while |P(c)-0|, \P2{c)-0\   decrease if c increases, besides that 
we have: ' 

(2.58)        \Pi{c)~0\<\P(c)-0\<\P2{c)-0\ 

and equality holds if and only if c = cv 

The region 1 is drawn in fig. 4.1. 

Remark 2.2. When the point (a0;Ol) e Cj, the solutions of (sj) have the properties 

(2-59) ,F = 0;Ts:=r|(ao)5 (a0,ai)€Cr 

On the contrary, when (a^) € C2 we find solutions of (s£) such that 

(2.60) Ts = TUc(a0,ai)),   %M = 0, K,ai)eC, 

Once Ts has been calculated by means of system (T), whenever (ao,al)e^0, we can 

compute the temperature in any point of the soil by using the formulas (1.20) We 

notice that the temperature T depends only on the spatial coordinate , but not on time 
t. 

By (2.1) we find the (constant) thickness of the frozen fringe: 

h~ZF = T^l   k"{T,)dT> 
0 

while (2.2) and (2.5) allow us to calculate the upper boundary of the soil: 

z m - p<° kfQi~k«a° t , „ 'rW-77—Tj^-t + H 

Formulas (1.22)  (1.28) give the water pressure in the unfrozen soil and in the frozen 
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fringe, respectively: 

kfai - kua0 
I,. 

b 

Pjz) = ~   ]lpJü      * 0<Z<zF(t) 

pJz) = <T~I K^k^K2(T(0)TTTrms ~ J \n " " K       **■(<) < * < *s(0- 
k
u
ao        kfai - Kao 

The water pressure pw achieves the minimum value for z = zF. Moreover, owing to (2.7) 

and to the properties of K2 and k^, the pressure pw increases with respect to z in the 

frozen fringe. 

Recalling (1.2) and (1.27), we see that the z-derivative of pw has a discontinuity at 

'LM1- = JT#2(0)«O- 
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cK (0)/k 
2        u C'C 

fi9. 4.1: the region I (lens formation) in the («„.a^plane, bounded by the corves C , C 

and by the straight line c = 0. *'    2 
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We investigate now the system (S^) imposing the conditions that are peculiar of the 

process of frost penetration. We keep the assumption a0, ax constant. Recalling the 

criterion(C) (see par. 1.7), we see that the set of equations (Sfl) defined in par. 1.5 takes 

the form: 

TS(t) 

' (2.61)        zF(t) - zs(t) = ji_y      kff(r,)dr, 

(«//) 

(2.62)      qjt) = (l-vsyzs(t) + 

Ts(t) 

kfai - kua0 
Lp 

^     -/^>-M^)-^ = 0 

(2.64)      qw{i) = ^Mk..a, 
kff(Ts(t)) 

uu0 

. (2.65)      PlzT(t) = Pwgw(t) + e(i - „s){Pi - pjks(t) 

with the initial conditions (1.17), (1.18): 

*s(0) = 6,    zT(Q) = E>b. 

The solution (Ts(t),zF(t),zs(t),qw(t)) of (sf,) must fulfil the following conditions  (cfr. 

criterion (C) and conditions (A) in parr. 1.7, 1.8): 

(2.66) zs < 0 

(2.67) 0 < zF(t) < zs(t) < zT(t) 

(2-68)        qw(t)>0. 

Equation (2.64) gives the water flux in terms of the temperature Ts(t) alone. Expressing 

also zF also zs in terms of Ts, one gets: 

Kk   (T (t))    ( Trs(t)       K^)-rTT§tff^) 

K«0K2(Ts(t)) Kiiv) 
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TM)       v i \    K->{TM)) 

(2.70)    ,5«=-W^+/ 
KM-kfM'^    \ 

TS(t) 

~*kJ k"{7j)d7]- 
0 

From (2.62) and (2.64) we find 

(2.71)        >7(,)—A*o    (K2(Ts(t))_     \ 

where c(a0,a]) = ^lZ^ 
LPwkua0 

Condition (2.66) imposes that the solution Ts(t) must verify at any time t: 

(2.72)        K2(Ts(t))<ckff(Ts(t)). 

Differentiating with respect to time (2.70): 

and combining (2.71) with (2.73) we obtain the following ordinary differential equation 
tor tne temperature Ts(t): 

(2.74)       ^iz^lf r(Ts(t))Ts(t) = MMIL_ c 

where 

We assume that  the given functions ,„  *„  kjJ md , Me regu]ar enough 

C (<„,,]) m order to guarantee loeal existence »d uniqueness of a solution TM   of 

(2.74), supposmg, for the moment, to know the initial value Ts(0). The integration with 

respect to time of (2.74) yelds: 
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(2 76) /        K°V-vs{v))*fi(y)e       , w      , 
(       } J(K^(K2(y)-ckff(y))   ^

)dy = t- 
1 sW 

Formally, we have found the solution of (SJT,), since, once (2.76)   has been inverted, the 

boundaries zF(t) and zs(t) are achieved by (2.69) and (2.70), respectively; the flux qjt) 

and the surface zT(t) are calculated by means of (2.64) and (2.65), respectively. 

However, we have to check in which cases, that is, for which values of (a0,ax), the 

solution is consistent with the conditions (2.66)-(2.68). For this purpose, we set 

(2.77)        «F = {(<*„,«!): 3! solution o/(Sfz) such that (2.66)-(2.68) hold} 

and we state the following 

PROPOSITION 2.2. 

0 7/(2.34) holds, then<5 = %. 

ii) If (2.29) is valid, then <F is the set bounded by 

(2.78) ff$ = {(aQ,ai):a0 = S0, ax > aj UC2 

where aQ and ax has been defined by (2.48) and the euro C2 by (2.38). 

In particular, if we define the angles 

(2.79) ßQ = {(a0,ttl): ^ < kua0 < kua0(l + Lpwc,)} 

(2.80) /?x = {(ao,^): kfQl > kua0(l + Lpwc{)}, 

we have: 

ii)a   if (a0,a1)e
(50 = <$nß0,   then there  exists  a time tf  (finite or infinite)  such that 

lim zs(t) = 0; 
Z   ► Z x 

ii)b   if (a^) € Ij = <? n ß1} then there exists a finite time t  such that zF(i) = 0. 
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Dim. 

We begin by evaluating (2.69) and (2.70) when t = 0: 

(2.8i) ,m=-*£i£MLL+ T
]   KM~^mk"{T1) 

kuaoK2(Ts(0)) [a +    J        j^j  dr) 
0 

TJO)       is , ,     KJTJO)) 

(2.82) Ism=b=-£läMtL+i      «^-hTTWf'W 
kua0K2(Ts(0)) y       J "       ]^) d-q 

0 

r*(o) 

0 (2 34) holds, no temperature Ts(0) can be founded so that (2.69) could be satisfied 

Actually, T5(0) has to be non-negative owing to (2.61) and (2.67); but by (2.81) and 

(2.34) ,t would result ^(0) < 0, in contradiction with (2.67). Case i) is thus proved. 

Ü) In order to find solutions of (s£) consistent with the constraints, it is necessary to 

assume  that   the  temperature   T<r  verifying   (2.29)   exists;   by  virtue  of lemma  2 2 

there eX1sts c, e (0,*2(0)AJ satisfying (2.30) (we can consider the open interval, since ' ix 

c, ex.sts, necessarily c, <*,(„)/*„). So, we see that the angles (2.79) and (2.80) are well 
defined. 

According to the properties of K2 and k„ (see assumption (Hn) and (1.31)), one has 

(2.83)       gf£-_   Ko    d (kff(Ts))(       fTsK2(r,)   \ 

x      n / 

Since v(r;(«,)) = 0 (cf, (2.15) and (2.30)), from (2.83) we deduce that the condition 
zF > 0 is satisfied if and only if Ts < Tj(C/). 

Let us now examinate the two regions (2.79) and (2.80) separately. 

ii)a   K>«i) €/?0. 

We remark that whenever (a0,ol)£,0 the valne defined immediately after the equation 
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(2.71) fixes univocally the temperature T*s(c) such that (2.15) is verified. 

We are going now to discuss the solvability of (2.82), that allows us to achieve the 

initial value of the freezing temperature T5(0), on the ground of the knowledge of the 

really assigned initial condition zs(0) - b. 

From (2.71) we deduce that zs(t) < 0 if and only if Ts(t) < T*s(c), since  /(*) = K2{s)/k}f(s) 

is an increasing function of s and f(T*s(c)) = c (c is fixed once a0 and ^ are prescribed). 

Therefore, the initial temperature must verify 

(2.84) Ts(0)<T*s(c). 

On the other hand, because of (2.61) and (2.67) evaluated at t = 0 it must be: 

Ts(0) 

(2-85)    ~b-^kl kff(T,)dr]- 
0 

Condition (2.85) is equivalent to 

(2.86) Ts(0)>Tb
s(ao) 

by virtue of (2.17). 

From (2.84) and (2.86) we achieve the condition 

(2.87)        Tb
s(a0)<T*s(c). 

Notice that (2.87) excludes the region 9^ defined by (2.25): 

^ n 3^ = 0. 

Call 

(2.88) R.-.%(-)(,,   /      "M-wffifjM    \      lf\()H 

0 y 0 

Equation (2.82) is 

(2.89) B(Ts(0)) = b. 
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It is easily seen that 

(2.90) B(T*s(c)) > 0, B(Tb
s(aQ)) > b, B'(s) < 0 for s < T*(c). 

We may conclude that (2.82) has a unique solution T5(0) in the interval M^n) T%(c)l 
provided that S    J 

(2.91)        B(T*s(c))<b. 

It is evident that B(I$(c)) = b defines the curve C2 (see (2.38)). The region outlined by 

(2.91) corresponds to the right-hand part with respect to the curve C2 on the (a ,tt )- 
plane. °'  * 

Remark 2.3. condition (2.87) is surely fulfilled if (2.91) holds, since the curve C (defined 
by TsK) = Ts(c)) is closer to the origin than C2: 

(2.92) {(ao^^0:fl(rKc))<4}c{(ao,ai)^0:7*(a0)<r*(c)}. 

Examining conditions (2.66)-(2.68), we see that the imposed conditions are fulfilled for 

* = 0, provided that (2.91) holds. Moreover, v(0) = o if and only if 
TS(0) = Tb

s(ao) = T*s(Cl). 

Once the initial condition T5(0) has been calculated by means of (2.89), the temperature 
Ts(t) is achieved by integration from (2.76). 

The function v defined by (2.75) is positive for . < Ta (cfr. (4.2.83)). Furthermore, since 

n(c)<rKc/)<T<r whenever K,^)^, from (2.76) and from (2.84) we deduce that 

TS(Q) > 0, so ts(t) keeps positive provided that Ts(t) < T*s(c). Moreove /er: 

_*2(rg(o)A        2 
kff(Ts(Q)) /{ u o) 

It is easy to check that T5(*) can not have an asymptote in the interval (Ts(0),Tj(c)). 

Thus, the temperature Ts(t) necesssarily reaches by increasing the value T*s(c) in a finite 

or infinite time tf. In the interval [o,*,) conditions (2.66)-(2.68) are verified (see (2 69) 
(2.70), (2.72), (2.73) and (2.83)). When t = tf, we have: 
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zF(t}) = z*F(aQ,ax) = - 
K0kff(T*s(c)) 

kua0K2(T*s(c)) 
V     o 

KM dr/ 

J 

zs(*f) = *s(«0>al) 
K0kff{T*s(c)) 

^0K2(T*s(c)) 
a+ J        ITtt d 1 

\        0 
Ki(v) J 

+ 

where Ts(c(a0,aj)) is the stationary solution of (2.74) (that can not be accepted owing to 

the fact that condition (2.66) is not valid), with Ts(t) = T*s(c). We see that zs(tf) = 0, 

that is when t = tf condition (2.63) fails. By (2.30) we have zF(tf) > 0 and equality holds 

if and only if c = c,. 

Remark 2.4. The function in the integral in (2.76) is positive for T5(0) < Ts(t) < Tg(c) 

and the denominator vanishes if and only iiy- T%(c). Thus, the two possibilities tf < oo, 

tf = oo occur according merely to 

(2 93)       /    K°^ ~ vs(y))kff(y> 
lK2{y)-ckff{y) 

T*S(c) 

(2.94) /      K°{1~1 
K        ) J      (kan?K. 

Ko(l - vsiy))kff{y)e 

TS(°) 
(kua0) K2(y) - ckff(y) 

<p(y)dy = oo 

f{y)dy < oo 

tf = oo 

tf < oo 

The integrals in (2.93), (2.94) can be computed once the functions K^T), K2(T), kff(T), 

v{T) and the boundary values a0, ax have been expressly prescribed. 

We   can   also   invert   the  equation   (2.76)   in  order  to  find  explicitly  Ts(t) = $_1(0, 

0 <t<tf, where 
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Ts(t) 
(2-95)      *(rs(<))=    (    K^-Us(y))kffiy)i_ S[})    T/(0) (W^F^^ *{y)dy 

Let us now exanimate the second region. 

">   (<W*i)e/?i- 

We first discuss, as in the previous case, the solvability of the equation (2 89) for the 

initial value Ts(0). It must hold, as in case „>, condition (2.86), otherwise Zp{o) would 
be negative. 

On the other hand, according to (2.67) and (2.69) it must be 

(2.96)        T5(0)<T*(C/). 

From (2.95) and (2.96) we deduce 

(2-97)        r*(«b)<n(cf); 

this condition is equivalent to (cfr. (2.48)) 

(2.98)     „0>Ä0 = _^j' \/W„ 
0 

Examinate now the equation (2.89). Formulas (4.2.90) are replaced by: 

(2.99) B(Tb
s(aQ)) > b, B(T*s{Cl)) > 0, B'{s) < 0 for s < T*s(c,) 

where B(s) is defined by (2.89). 

Therefore, there exists a unique solution . = Ts(0) of (2.88) if and only if B(T%(c,)) < b 

But by the definition of Tb
s(a0) (2.17) we have 

T;(c<) 4K) 

0 0 

Thus   provided that (2.97), there exists exactly one value Ts(0) sueh that (2 82) is 
satisfied. ; 
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Whenever (a0,a1)eß1 and a0 > a0  the initial situation is consistent with (2.66)-(2.68). 

Indeed, we have zs(Q) < 0, since 

(2.100)       T*s(c)>T*s(Cl)    ioTcl<c<K2(0)/ku. 

If, on the contrary, c > K2(0)/ku (that is there is not any T*s(c) solution of (2.15)), it still 

holds   zs(0)<0.   Moreover,   we   have   zF(0) > 0,   and   equality   holds   if   and   only   if 

Ts(0) = T*s(cl). 

From (2.74) and (2.75) we see that Ts(t) > 0 whenever T5(0) < Ts(t) < Tj(C/). The front 

speed zs(t) does not vanid=sh as long as Ts(t) < T}(c,) (zs(t) would be zero if and only if 
Ts(t) = T*s(c), but in ß1 (2.100) holds). The solution Ts(t) of (2.74) can not have 

asymptotes £<T*s(c): indeed, the quantity on the right-hand side in (2.74) would not 

vanish if Ts(t) tended to I. On the other hand, the derivative fs(t) is bounded by: 

lTs(t)l<   kl(l-u(Ts(0)))       se r5(0) < TSW < T5(C/). 

Thus, the solution Ts(t) of (2.74) must reach the value T*s(Cl) in a finite time I.   At that 

time we have zF(t) = 0 and the unfrozen region of the soil becomes exhausted. 

Once the temperature Ts(t) has been calculated, by inverting (2.76), we can achieve the 

boundaries   zF(t)   and   zs(t)   by   means   of   (2.69)   and   (4.2.70),   respectively.   Since 

Ts(t) < T*s(Cl) for 0 < t <1, we see that the constraints (2.66) respected. 

By (2.61) we find the final thickness of the frozen fringe: 

Ts(t) 

0 

Giving a geometrical interpretation on the (a0,ai)-plane, as we did for the set 90, we can 

say that the left-side boundary of the region ^ is the vertical straight line 

(2,101)  a°="^te)/ *^)rf'' 
0 

while on the left-hand side ^ is bounded by the straight line rc . 

When t = 0 we get the condition (2.99). As t increases, the straight line moves on the 

right towards the point T<$£pf\) and  when 
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the isotherm T = 0 reaches the base of the soil. a 

On the ground of the analysis of cases ,,> and ,,> introduced in proposition 2.2, „e see 

that ,t „ more appropriate to denote the regions ,„ and *, by %«)) and by u,M0). 

On the contrary, dnnng the process of lens formation, the boundaries of X(t) keep it 

rest Tms corresponds to the fact that the solution for lens formation is global, while the 
solution for frost penetration is local. 

In order to understand better the dffierence between the teo cases ,,<„, ,, = 00 when 

K,o,)^„ (case ,-■> of proposition JJ.2)I we h^ to ^ ^ ^ 

curves e, and C2 defined by (2.37) and (2.38), respectively 

Consider the two families of curves «,<„ and C2(t) dependmg on the parameter , = ,,(„, 

JfO^ne,, o<c<c,       p5(6) = renc2i 0<c£c; 

where tie the straight lines r, are defined by (2.23). The points Pi(i) Md P2(„) are well 

defined accordmg to the properties of the curves e, and C2 (see remark 2 1) 

6, < *j, it is eastly checked, by examining (2.37) and (2.38), that 

(2.102)      lnW-0|<|P;(6l)_0|<|p!W_0|s^w_oh     0<csc( 

and equality holds if and only if c = c,. 

We remark that the slope of the straight fines r0 and ,„ which fix the boundaries of the 

curves «,(.) and e,(.) move towards the origin, but keeping inside the angle *, 
The property (2.102) is showed in Eg. 4.2. 
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•  °<o 

figura 4.2: the curves C-(6j) and C,(62). i = 1,2, with b1 < b2. 

Let us take now (<*0.ai)e% and the corresponding solution of (sft) for te[0,tf); for each 
time t g [0,tj) consider the curves 

(2.103)      C2(z5(0) = {(a0,ai):. + ^5(0 + jX- /      *„(„)^ 

T's(c) 

+ I K2(r)) - Ckf/(T)) 

KM 
dr] = 0,0 < c < cX 
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According to (2.102), the distance between a point („„,„,, faed in % Md the curve 

C2(*sW) decreases as t increases. 

Moreover, is{i) = 0 if and only if («^ e c^,,; in that case, Ts(t) = T*(c). 

Now, if tf = oo, then zs(t) never vanishes and 

This  is  equivalent   to  state  that   the  curves   C2(,5(0)  never  cross   the  point   (*n a ) 

corresponding to the assigned boundary data. 

If, on the contrary, tf < oo, we have (a^) € c2(Zs(tf)) and zs(tf) = o 
Consld     th   solution Ts(t) of (274) for f ^ t^ ^ w  .^ = o   K . ^ > o _n ^ 

ngh   interval t > «„ we get a contraction with (2.66), since Ts(t) would be greater than 

nlC Tt] Ckff(Ts(t)) > K2(Tsm   Whik *{Ts{t)) defmed b? (2-75) is negative 
On the other hand, if ±s(t) < 0 in some right interval of tf, the solution of (2 74) is not 
consistent with (2.66), (2.73). '    ' 

We  conclude  that it  is not  possible  to get  a solution of (sf/}  consistent  with the 
prescribed conditions when t > t,. 

We wonder whether a process of lens formation may .tart at * = tf. As a matter of fact, 
S(t) = Ts(c), zF{t) ^ zHaQ,ai) is solution Qf (SL} for t > ^ with b = ^ = z^   ^ ^ 

The time , = ,, is a transition time from the process of forst penetration to the other of 
lens formation. We remark that 

^^-0  t>t 

and that the point („,,„,, given by the presribed data lies on the boundary C2(^,)) of 
tne region JL. . t 

Summarizing the results got in parr. 2.1 and 2.2, e may conclude that for any 

assignment of the data M on the plane and of the initial value ,s(0) = * < H we are 

m position to foresee if a process of lens formation, or frost penetration or none 'of them 

^    tl   r * " SUffiCient t0 Check if the p°int <<**> lies - «*> - - S(6) = %(b) u ^(b) or in none of these regions. 

The following proposition sums up the developed analysis. 
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PROPOSITION 2.3. 

l)      !  a+ J K^)dT]>0 Vtfe(-oo,0),   thenl(b) = <if(b) = Q. 
0 T 

»)   #   3 rff < 0 5UCÄ too*  <r + J ^j~dv = o, 

0 

then I  and <5  are two contiguous regions on the {a^)-plane,  having the curve C2, 

defined by (2.38), as a boundary in common. 

Moreover,  whenever (aQ,Ql)el(b),  the system (sfc) has a unique solution for any time 

t>0 such that the temperature Ts is constant, as well as the thickness of the frozen 

fringe; the growth of the upper boundary of the soil is linear with respect to time. When 

(a0>ai)e% (case ii)a of proposition 2.2), the system (s£) has a umque solution that 

attains m a finite time (in that case we have a transition to the process of lens 

formation) or infinite (m that case the solution is global) the stationary values 

introduced in the proof of thr proposition 2.2. 

When («0,^)6^ (case ii)b of proposition 2.2), the system (s£) has a unique solution 

whose mam feature is that the isotherm zF(t) = 0 reaches in a finite time the base of the 
soil. 

The regions 1(6) and «F(6) are outlined in fig. 4.3. 
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cK (0)/k 
2        u 

%b) 

o<Jb)     cxJb) 
. ex. 

fi8A.3: the regions £(6) (lens formation) and 9(b) (frost penetration) on the (^.aj- 

plane. The curve C2(6) is a common boundary to the two regions; the region V(byu 

bounded on the left-hand side bvthe straight line a0 = S0(b). The two parts %(b) and 

?!(6) are related respectively to the cases ii)a and ii)b of proposition 2.2. 
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3 Boundary thermal fluxes depending on time 

We are going now to discuss the solvability of (Sfl) (defined in par. 1.5), together with 

the conditions (C) (par. 1.7) and the constraints (A) (par. 1.8) removing the assumption 

a0, a-y constant. 

Our main purpose is investigating the possibility to pass more than once from one 

process to the other, in order to simulate a process of penetration of the front zs, which 

occasionally, under appropriate conditions, stops giving rise to the process of lens 

formation. In the previous section we have already dealt with one case of transition 

process form frost penetration to lens formation: more precisely, it occurred when 

(a0,ax) € %0 and tf < oo. We find it convenient to write the set of equations (S/;) + (C) + (A) 

in the following way: 

Ts(t) 

r(t)   -zs(t) k±®J       W"*" 

qjt) = (l-vs)£zs(t) + ViW-VoW 
Lp 

P.zrit) = Pwqjt) + e(l - vs)(Pi - PJis(t) 

Ts(t) 

(S/l) + (C) + (A) {   zs(0) = b,    zT(0) = H>b 

dpw{zs{t),t) 
dz 

dz 

zs(t) = 0 

>0 

0 < zF{t) < zs(t) < zT(t) 

(   «J t)>0 
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Moreover,  we know that  when m < 0  (henc     ^M = 0),  then (S/l) + (C) + (fl) 

describes the process of frost penetration; when h(t) = 0, the process is lens formatic 
We read the assigned data a0(t), a^t) 

«on. 
as a curve 

(3.1) 7 = WWW) 

which is prescribed on the K^-plane, with «ft,) > o, a?(t) > 0, * 6 [<U0] 

Usmg the same notations as in sect. 2, we will denote by l(b) and ffW the regions on 

the plane where the initial conditions allow the occurrence of lens formation and frost 

penetration, respectively, according to the summary given in proposition 2.3   We will 

assume that the temperature TCT verifying (2.29) exists, so that it is l(b) ± 0, g(6) # 0. 

3.1 Preliminary results 

1) If y C 1(b) Vte[0)to], then (S/|) + (C) + (A) AaS a «niyue solution describing a process of 

lens formation, such that the temperature Ts>  the thickness of the frozen frinae t    z 

and the hydraulic flux qw depend on time. F 

Actually, call 

(3.2) «*M(<WW,= "Jpzt^l 

or, more briefly, cJt) and assume, contraryto our claim, that a solution of (s„> + (C) + (A) 

verifies zs(r) < 0 at some time r e M. By virtue of (2.72), we would have 

(3.3) K2{Ts{r)) < c< {r)kif{Ts{r)). 

We denote by T*S{T) the temperature satisfying *aTOr)) = e^,^» (it is 

—lly determined since (*WW)eA thus c^, < C| < ^(o)/ft-1, (2.15 has 

exactly one solution). From (3.3) we deduce: 

(3-4) TS(T)<T*S(T) 

Moreover, from (S„) + (C) + (A) we easily find: 
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Kr Kn (3.5) „ > Zs(r} = -I-^-) Z(TsW> > -^JJ Z(rjW) 

where 

<r  +     J    JTT^ drl Z(s 
K2{s) *i(v) 

) 

+ 
s 

T^y kff(v)dr, 

(cfr. (2.70)). 

Inequality   (3.5)   yelds  that   the  point   P(r) = (atf^aftr))  lies   in  V(ZS(T))  and  that 

P(r) g C2(Z5(T)). SO, we get a contradiction. 

We  conclude  that,   whenever   (a%(t),af(t)) e 1(b),  it  is  possible  to  find  a  solution  of 

(S/z) + (C) + (A) only if *s(*) = 0, t e [0,*o]. 

On the other hand, taking %(*) = 0, te[0,tQ], the solution of (Sfl) + (C) + (H) is for each 

time t 

(3-6) «„,(*) = 
^(o-fc^aw 

LPw 

o 
where T5(<) is the uniqur solution (cfr. (2.13)) of 

(3.8) ww7 *//(^i+y —^5— 
o /    o 

drj = 0. 

The speed zr(<) and the height of the soil are given by 

(3.9) *r(0 = i??U0 

(3.10)        ZT(t) = ff+J 
kfa!(T) - *WO) 

dr 

Finally, we achieve the temperature T and the pressure pw in any point of the frozen 

fringe and at any time t by means of (1.20) and (1.28). 

If we are interested in checking when the thickness of the frozen fringe b - zF(t) and the 

temperature Ts(t) are increasing or decreasing with respect to time, we have to derivate 
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(3.7) and (3.8): 

kfl(Ts{t))fs{t)^ J      kff(j])dT] 
(3-11)        zF(t) = 1 

«w 
0 

TS(t) 

(3-12)       fs(t) = ___i ^    °      K^) 

We make the following remarks (dropping the apex T, for simplicity): 

0    ^    «oW<0,    d!(0>0,    then    T5(*) < 0,    iPm < 0      Ö  m>n     Tr, +-    i 
(A, (*\\2 , /. , »2 ,       ■ Mj ~   '    9«""^ °-    ln    particular,    if 
(Mt)) + («lW)2 > 0, then T5W < o, ijp(0 < 0| U0 > 0 (curve 7l in fig. 4.4). 

•0   *   *,(*)> 0,   ,lW<0,   then   tsW>0,   i^O > 0,   *„(*> < 0.   If   («,(*))>+ (4lW)»>0 
then the mequalities hold in the strict sense (curve ,2 in fig. 4.4). 

For a more general curve 7, we have *s(«) < 0 if and only if 

Ts(t) (3-13)   wiv.(^wi)^»/ ^(^-^„o. 
«y (3.X3) is ^ to solve in°terms of ^ aMt since on 

and ttl(0 by means of the implicit relation (3.8). 
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o(0(b) *0(b) 

fig. 4.4: process of lens formation along the curves -y1 and y2. Along jx the temperature 

at the base of the lens Ts decreases, the thickness of the frozen fringe and the hydraulic 

flux are increasing with respect to time. Along y2 Ts is increasing, while the thickness of 

the frozen fringe and the hydraulic flux decrease. 

2) // the curve 7 is such that (Q^(t),a^(t)) e*F(zs(t)) for any time te[0,to], where V(zs(t)) 

is the set bounded by the curve C2(zs(t)) and defined by (2.38), then (Sfl) + (C) + (A) does 

not admit solutions describing lens formation (that is with is(t) = 0). 

In order to check 2), it is sufficient to argue as in point 1), by assuming ab absurdo that 

a solution (S/;) + (C) + (A) such that zs(t)=0 may exist. We easily find a contradiction 

with the assumption (a^(i),a^(t)) e ^(zs(t)). 
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Let us keep now the hypothesis (<#(<),«?(*)) € *(zs(t)) and write formulas which 

generalize (2.71) and (2.73), in order to encompass the present case of thermal fluxes 
depending on time: 

_    *«<*W) (K2{Ts{t)) (3.14)        is{t)= £$®(M 
(Ts(t)) 

-r~l C*{t) 

ku<*?l(i\8Ts\K2(Ts(t)) 

Ts(t) 

(3.i5)    wt)=-T4üMkjy!W1,+ [ mJjjgsv» -+J k in) 
dT} +TT-N<)+ 

+ Ko°\(t)\ kfATs(t)) 
Wim K2(Ts{t)) 

LTf{t) '*>-»*>,) // 
{ I       m—d- HI 

<t) \ 

kff{r})dr, 

I 

By combining (3.14) and (3.15), we get the following ordinary differential equati 

where <p(s) has been defined by (2.75) and 

f3 17) ,(,    kfM f      K2(r,)~^Mkff(Tl)     I     1    f (3-17)        ^) = m*+J KM " Vi-oJ W»* 
0 / o 

If we take constant a0, ax in (3.15), we get the stationary equation (2.74). 

The functions <p(s) and i>(s) are surely negative fors < T^c,). 

Since we set (a3(t),a?(t)) € S(z5(<)), we have, whenever 0 < c < K2(o)/ku: 

( 

(3.18)     <r+ct(ty K«m 
Kn 

n^it)) 
?5(t)+vb)/    kfWdT> + 

T*s(ct(t)) 

+ I K2(y)-c^t)kff(ri) 
dr)>0 

On the other hand, if Ts(t), zs(t) verify (S/,) + (C) + (A), it must hold for any t e [0,*o]: 

-49 



(3.19)        c + K2(Ts(t))K«Z(t) 
hfPsW)    Ko 

( Ts(t) 

+ J     KM rf7? = 0 

0 

From (3.18) and (3.19) and reminding that c^t) =      ,Tf,      ^J, we deduce: 

(3.20) Ts(t)<T*s(c^(t)) 

and 

(3'21) *^W) <CW- 

If c> K2(Q)/ku, then (3.21) obviously holds. 

We may conclude that, when 7 c ^(zs(t)) (that is 7 is ever on the right side of the curve 

C2(z5(<))), the fornt zs(t) has the property zs(t) < 0. On the other hand, if we know the 

solution Ts(t) of (3.16), we can achieve from (2.70) (which is valid even in the case <*0, 

ax depending on time) the boundary zs(t) and, by means of (2.103), the profiles of the 

curves   C2(zs(t))  that   delimitate  1T(z5(<))  at  each  time   t.   By  comparing  the path  7 

assigned as in (3.1) with the regions 9:(z5(<)), we are able to evaluate how long the 

process of frost penetration lasts. 

If we add the hypothesis äo(0 < 0, then we get from (3.16): 

(3.22) Ts(0>0. 

3.2 A transition process 

We are now in position to describe a process where the curve 7 moves form the region IT 

to £ and viceversa. 

Consider a path 7 = (a^(t),a^(t)), t e [0,t0], such that (a^(0),a^(0)) e If. 

Assume, at least for the moment, that the additional hypothesis 

(3.23) c$(t) < 0 
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holds. 

Getting ts from (3.16) yelds 

(3.24) TM) -        1     I    &n,o^h,(T «n L   (*«.a3T*))2 {KQ(TM)) 1   }   Ts{1) ~ WM^ ~ im*Ts(t)) + ^^-^m -c7 w 
Equation (3.24) shows that 

for  Ts{t)<min{T*s{c^t)),T*s{Cl)},    0 < c7 (*) < K2(0)/k 

(3.25) TS(0>0{ 

/or T5(*)<7>/), c>K2Q)/K 

Furthermore, the derivative fs(t) is bounded by a constant if 

sup      I aj(i) | < oo 
t e [o, *0] 

and T5(f) can not have an asymptote t ^ Tj(c7(<)). 

We may conclude that, whenever j c %(zs(t)) for any * «= [o,<0] (curve 7l in fig. 4.5), then 

T5(0 reaches the temperature T*s(c,) in a finite time t; in that case, the isotherm T = 0 

matches the base of the soil, that is zF(i) = 0. The final thickness of the frozen fringe is 

(3-26)   2s(i)=Kml k»{r>)dT>- 
0 

The second possibility for the path 7 is when there exists a time tf <t0 such that 

(«K'/WC*,))^^*,)) (fig. 4.6); hence Ts(tf) = T%c>{tf)) and zs(tf) = o. We remark 

that m the present case of thermal fluxes depending on time, fs{tj) is not generally 

zero, as it occurs in the case a0, aa constant. 

It may happen, as we saw, that Ts(t) tends to T*s(c^) in infinite time (tf = oo). In such as 

case, a? must verify «mäft«) = 0, otherwise it is impossible to have stationary solutions. 

Conversely, assume that ^ < oo and that («J(*W(«)) * H'sHf)) in some interval .* > tf 

(curve T2 in fig. 4.6). In that case, a lens starts growing at the time tf and at the height 

2 = zs(tf). As long as 7 lies in l(zs(tf)), which has fixed boundaries, the thickness of the 

lens goes on increasing; the temperature Ts and the thickness of the frozen fringe 
zs(if)-*F(.t) change with respect to time, according to the statement 1) in par. 3.1. 

Essentially, the process of lens formation developes following two directions: 
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i) there exists a time tt > t. such that (p%(t\),<X\{t\i) e Cx(z5(<y)): in that case the 

frozen fringe invades the whole unfrozen soil and zF(tt) = 0 (branch y% in fig. 4.6); 

ii) there exists a time f2 so that kuo$(t2) = kjaf(t2): in that case, the water flux qw 

vanishes at t = i2 and a melting process will take place for t > t2, if 7 goes under the 

straight line kua0 = k^ax (branch ~f2 in fig. 4.6). 

For more general curves 7, which has not the property (3.23), further posiibilities occur, 

in addition to the ones just introduced. 

First of all, fs(t) may also be negative, if ä%(t) > 0. 

As long as Ts(t) < min{Tg(c'y(t)).T*s(cl)}, the velocity of the front zs(t) and the boundary 

z = zF(t) never vanish. If Ts(t) decreases, it tends to a stationary value Tl if and only if 

(3.27) Um (rP{Tl)K0{l-v{Tl))e-^3 + klc'<{t))=kl K^l) 

t-oo^   »   °" y   l"     (aJW)3       "     V V       u^//(^)- 

Conversely,   if   Ts(t)   increases   up   to   the   temperature   ^(^(t))   when   t = t,   and 

7 C L(zs{tf)) for t > tp then the process of lens formation starts. 

In addition to the possibilities stated above as for the stop  of the process of lens 

formation, a third   case may occur, when the curve 7 goes into the region ^(zs(t.)) once 

again, say when t = t3> if and a second process of frost penetration takes place  with the 

initial condition zs{tf) for the boundary zs(t) (branch y2 
in fig- 4.6). 

Iterating the described process, one can get a sequence oflenses and each ice layer is 

separated from the previous one (which is above) by a layer of frozen soil, corresponding 

to a process of frost penetration. 
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o(. 

u*(o).w(on M) 1    / / 

<*o(0) otQ(t) 

CM*» 

fig. 4.5: development of the process of frost penetration along the curve jv For * =7the 

isotherm zF reaches the base of the soil. 
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(otMUW) 

mtj, cfjtj) 

fig.   4.6:   process   of   frost   penetration   starting   from   the   boundary   fluxes   values 

K(0W(0))€*(r5(0)). 
For   t = tj  the   velocity  of the  front   zs  vanishes  and  lens  formation  succeeds  frost 

penetration. Along the branch 7° the process stops since zF reaches (by decreasing) the 

base of the soil when t = tr; along 7* the water flux qw vanishes when * = t2; along 7^ a 

second process of frost penetration takes place when t = U. 
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4 Temperatures specified at the boundaries 

We write again the set of equations (Stmp) + (C) + (A), defined in sect. 2 that describes 

the freezing process in the case that we assign the temperatures at the extremities of the 
soil h(t) = T(0,t) and g(t) = T(zT(t),t), h(t) > 0, g(t) < 0: 

Ts(t) 

, <">   /  W**=*feÄ h{t) 

(4-2)      Lp^w(t) = (i - ^„l^«) - 4/%IsW _ W) 

(4.3)      P)ir(i) = ^j^ + e(1 _ ^)(p< _ p j%(<) 

f^)-^^t„(„ 
(4.4)        a  + j 

(4.5)       U^-^(T5W)^^M    +K2(T 

K0   'M 

2^5 (0) KKt) 
zF(t)kff{Ts{t)) 

(StmP) + (C) + (A)< (4.6)      *5(0) = 6,   zr(0)=rtf>6 

(4.7) dPwi'siW) 
?M = 0 

(4.8) %(<)<0, 

(4.9) ^»(*si<) 
<9z >0 

(4.10)    0 < zF(f) < zs{t) < zT(t) 

(4-H)    U<)>0 

The unknown quantities are the water flux ,„(*), the boundarie 

the freezing temperature Ts(t) and the water 

when zs(t) < 0 (in ttha case the water 

lanes zF(t), zs(t) and zT(t), 

pressure Pw(zs(t),t). We recall again that 

pressure gradient vanishes at z = zs, see     ) 
have a frost penetration process; when zs(t) = 0, lens formation occurs. 

we 



Remark 4.1. In theory, we should make use of the results in sections 2 and 3, in order to 

solve the present case, basing ourselves on the relations 

a^>-zF(ty a^>-zT(t)-Zs(ty 

Considering, for istance, the case of lens formation, once h(t) and g(t) are given, we 

should find a0 and a1 such that the following equations, coming from (4.1), (3.8) e 

(3.10), are satisfied: 

k..b 
"o(0 =  

<*i(<) 

Ts(t) 
kuh(f)-   /       kjf(v)<iv 

0 

 Ts(t)-g(t)  
t 

H+-^-J(kfai(T)-kuaQ(r)yiT-b 
0 

,     m  kuQo(t) 

( Ts{t) \    Ts(t) 

b+k±wJ   k'f^+J —Ä^r^=° 

where c(t) is defined by (3.2). 

The system we have just written is anything but simple, mainly owing to the implicit 

dependence of Ts on the fluxes a0 and  ax in the third equation. 

Therefore, we believe it is more convenient and more interesting to solve directly the 

problem (4.1)-(4.11). 

In paragraphes 4.1 and 4.2 we will discuss separately the cases of lens formation and 

frost  penetration,  respectively.  Finally,  we will investigate on the posssibility of a 

transition process (par. 4.3). 

4.1 Lens formation 

From (4.1) we get zF(t) in terms of Ts(t): 
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(4.12)      zAt)= W£  

KK*)-J      kff(r,)dr, 
0 

Eliminating qJt) and zF(t) from (4.2) e (4.4) by means of (4.3) and (4.12), we fnd the 
following problem for Ts(t) and zT(t): 

(4.13) ZT(t) Pl(r5(t),o + <p2(Ts(t)) = o 

(4-14>    ^=-^+«) 

where s 

(4.15) ^(.,0=^ 1  

M(0 - j kff{r,)dr, 

(4.16) ^.) = /^, + , 

0 

(4.17) ^(s,<) = jiy ^ *„(,)</„ - *„A(oj 

We remark that: 

(4.18) ^(s,*) > 0, ^(s,*) < 0 per s < 0, t > 0. 

From (4.13) and (4.14) one gets the following identity for zT{t) as a function of the 
temperature Ts: 

(4.19) zT{t) = b+TLt ^(rs(«J)+%(^ (9(t) - r5(*)) = ^(T5(o,0- 

Derivating (4.19) with respect to time and comparing with (4.13), we get the following 
ordinary differential equation for Ts(t): 

(4.20) - J2(Ts(t)l _ dy(Ts(t),t)              d<p{Ts{t),t) 
1        ' <Pi(Ts(t),t)~       dTs       T^) + Ft • 
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We must add an initial condition for Ts, that is not esplicitly prescribed by the set of 

equations (4.1)-(4.11): T5(0) has to be computed, using the known initial values A(0), 

#(0), Heb, and solving the equation ^(T5(0),0) = H, that is 

^■ZL) <Pl{Ts{Q),Q)--LPt       H-b      +^(rs(0),0) 

Our first purpose is to discuss the solvability of (4.21). To tis end, we rewrite the 

conditions (4.7)-(4.11), which in case of lens formation become 

(4.22) %^ > 0 

(4.23) 0 < zF(t) < b 

(4.24) zT[t) > 0, 

in terms of the temperature Ts. We will first concentrate our attention on the initial 

time t = 0: we will look for suitable conditions on the initial data h(0), g(Q), H and 6, so 

that the initial situation is consistent with the conditions (4.22)-(4.24), computed for 

< = 0. 

We start with the following 

LEMMA 4.1. If there exists a temperature Ta such that <p2(T<r) = 0,  then for all t>0 

there is exactly one value T (h(t)) satisfying the equation 

(4.25) r2(Tp(h(t)) = PwL^^^ Vi(Tp(Ä(0),*)y3(rp(A«)),0 

Dim.   We write (4.25) as follows: 

(4.26) kuh(t) = r(Tp(h(t))) 

where 

(4.27) r(s)=-Kt 

kff(s) 
°K2(s) 

( .**2(»)-##//(*)      ^ 

"/ 
*//(*) 

\      o / 
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Let us consider the function 

F(s) = a+ j ■**'<'>-0&//W kff(s) 

KM -drj, s < 0. 

From the hypothesis (Hu) and from (1.31) one finds: 

(4.28) F'(s) = -(ß^j J^dr, > 0, F(s) > <p2(s)    for , < 0,   F(0) = ^(0) = c. 

Assume ah absurdo that 

(4.29) F(s) > 0    \/s < 0. 

By virtue of the properties of the functions K2 e kff we have just recall, for any fixed 

s < 0 there exists exaclty one value c e (0,A'2(0)/y such that (see also (2.15)) 

K2(s) = ckff(s). 

If (4.29) is valid, it would follow 

too) ^/(c)^(t(;f
2(^>o. 

o 1 

but (4.30) is in contradiction with Lemma 2.2 of sect. 2.1. 

Therefore, there exists st < 0 such that F(Sl) < 0. 

Reminding (4.28) and (1.31), we find, for 5 < 8l: 

*> = -*oi^)> -K^F{Sl)> -K^FisJ. 

Since K2{s) tends to zero for s going to -oo, we conclude that the function r{s) reaches 

somewhere the value kuh(t): in other words, (4.26) has at least one solution for each 

t > 0 (notice that r does not depend explicitly on time t). 

The uniqueness of the solution, that we call Tp(h(t)) to point out the dependence on 

time only through the boundary temperature h, is immediately achieved by   observing 
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that r(0) < 0 and 

(4.31) r'(s)  < 

> 0 for Ta < s < 0 

= 0 for s = Tc 

< 0 for s < T 

Finally, taking into account that r(s) achieves its negative minimum for s — T^, we have 

(4.32)        Tp(h(t))<Ttr.       D 

The following result allows us to estabilish when the equation (4.21) has soluctions 

consistent with the conditions (4.22)-(4.24), computed for t = 0. 

PROPOSITION 4.1. 

i)If 

(4.33) f^jdr] + <T>Q     Vs<0, 

then (4.13)-(4.14) has not solutions consistent with (4.22)-(4.24). 

it) Suppose that there exists one temperature T' a such that 

K2(V) 

0 

then the following cases occur: 

ii)a   if 

(4.35) kfg(0) > kjT, + (H- 6)X^3(Tff,0), 

then (4.21) has not solutions consistent with (4.22)-(4.24) computed for t = 0. 

-60 



ii)b If 

(4.36)        */W-*)W^ 

then the rnitial data are consistent with (4.22)-(4.24) and (4.21) is satisfied for exactly 
one value Ts(0) e [Tp(h(0),g(0),b,H), T(r] where 

(4.37) Tp = max{rp(A(0)),rra(Ä(0),ir(0),6,Jff)}, 

Ä tiie temperature rp(*(0)) « rfe/|„erf 4y (4.26) (computed for * = o) and T    is the 
one value such that m 

(4.38)        kJ^tIr^-H   b 

ii)c     If 

(4-39) kfg(0) < kfTp + (H - b)Lpt<p3(Tp,o{l 
+ PWL 

K2(TP) 
kff(Tf 

then we conclude as in ii)a. 

Dim. From (4.1) and (4.23) it follows that the temperature Ts cannot be positive. 

Hence, if Ts(t) is the solution of our problem, we get from (4.18): 

(4.40)        91(Ts(t),t)>Q,  <p3(Ts(t),t)<0 

Assume that the hypothesis (4.33) holds: this means that ^s) > o for all ,<0. We see 

nnmediately that the equation (4.13) cannot be satisfied by a function ^ such that 
condition (4.24) is fulfilled. So, the case i) is proved. 

Let us now assume that there exists a temperature T<n which depends only on the 

U^TJ1' ^ "* °n ' (W n0t °n thC b°Undary temPe-t-es h and ,) such that 
(4.34) holds, that is ip2(T<r) = 0. 

Since <p2{8) is increasing for « < 0, we have: 

(4.41) <p2(s) < o if and only if s < T 

■61- 



Therefore, the solution Ts(t) has to verify: 

(4.42) TsWKT,, 

otherwise (4.13) is not consistent with (4.24). 

On the other hand, from (4.21) and from (4.40) deduce that it must hold 

(4.43) ,T(0) = H < » + ^Jof.')' = "l(rs(0)) ' 

We remark that F^s) is an increasing function for s <0. So, if 

(4.44) H>Fm = ^Jj^j, 

no initial value Ts(0) will satisfy the condition (4.43). 

On the contrary, let be 

<"»>    -f^) 
we easily see that there exists exctly one value Tm, g(0) < Tm < 0, depending on h(Q) and 

on y(0), such that F^T^ = H. We notice that 

(4.46) Tm>g(0) 

(indeed F^g) = b <n = F1(TJ). 

Owing to the properties of F1? we can conclude that (4.43) is verified if and only if 

(4.47) T5(0)>Tm. 

By comparing (4.42) computed for t = 0 with (4.47) we see that it must hold: 

(4.48) Tm < TV 

Condition (4.48) is equivalent to ^(T^) > H, that is 
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(4.49)        kf(g(0) - TJ < (H - b)LPiV,3(T<T,0). 

Therefore,  if (4.35) holds we see that no initial value T5(0) is such that  (4.43) is 
satisfied. Thus, the case ii)a of proposition 4.1 is proved. 

Assume now that (4.49) holds. 

We have still to impose the condiotion on the water pressure gradient (4.22), that in 
terms of the temperature Ts becomes 

(4.50) ,2(Ts(t)) > PWL^^} ^(Tsi^WTsitht) 

Condition (4.50) is equivalent to (see (4.27)) 

(4.51) r(Ts(t))<kuh(t). 

By virtue of Lemma 4.1, whenever (4.34) is true there exists exactly one temperature 
Tp(h(t)) such that (4.51) vanishes. 

Recalling (4.31), we see that (4.51) is true for a time t > 0 if and only if 

(4.52) Ts(t)>Tp(h(t)). 

Now, the two posiibilites can occur (see (4.32)): 

2)     rp(A(0))<rm(A(0),j,(0))<r, 

2)     Tm(h(0),g(0))<Tp(h(Q))<Ttr 

Let us write again (4.21) in the following way: 

(4.53) *(Ts(0)) = F1(Ts(0))-H 

where 

(«4)        •W = ^) = (,_l)_p^i   ,so 
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and Fx(s) is  defined by (4.43). We have: 

(4.55)        ¥(s) > 0 for s < T„ , «(Tj = 0 

,r   fhMh \iv,    , /   ,    fK2^) K2(s)Uuh(0) - K0 J -^dVj+K0kff(s)^ + J j^dr, 

(4.56)        *'(«)= -^ 7±-^~ 
K^S) t ?kffr) kuh(0)-KoJ-^drj 

0 
KoPwLK2(s) kuh(0)-r(s) 

s, -2 

Thus: 

(4.57) ¥'(*) < 0 if Tp < s < 0, *'(Tp) = 0. 

In the case 1, the equation *(s) = ^(s) - F has exactly one solution s = T5(0), without 

further conditions,  since Fx(Ta)>H  (see  (4.49)),  F1(Tm) = H,  F[(s)>0 for (at least) 

Tm < s < 0. Moreover, we have Tm < Ts(0) < T „ and T5(0) = 2^ if and only if Tm = T^. 

We point out that, by virtue of the properties of Fr(s), one has 

(4.58) Tp < Tm if and only if kfg(0) > kfTp + (H- b)LPi<p3(Tp,0). 

We conclude that in the case 1) we find exactly one initial temperature Ts(0) consistent 

with the prescribed constraints if and only if 

(4.59) kfTp + (H- b)LPi<p3(Tp,0) < kfg(0) < kfTa + (H- b)LPi<p3(T„,0). 

The inequality (4.59) is well defined by virtue of (4.52) and of the increasing profile of 

the function <p3(s,t) with respect to s. 

In particular: 

kfg(0) = kfTa + (H- 6)1^3(2^,0) if and only if T<T = Tm = T5(0); 

kf9(0) = kfTp + (H- b)LPilf3(Tp,0)kfg(0)   if and only if Tp = Tm. 
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In the case 2), the equation *(,) = F(s) - H has exactly one solution if and only if 

(4.60) nTJyF^TJ-H. 

In that case, the solution is in the interval [Tp,T<T) and T5(0) = Tp if and only if in (4.60) 
is true the equality. 

Taking into account that 

(4.61) nTp) = (H-b)Pwl^y 

we see that (4.60) is equivalent to 

(4.62) M(0) > kfTp + (H- b)LP^3(Tp,0) (l + Pj^^j • 

Furthermore, kepping in mind (4.58) once again, we see the in the case 2) we find 

exactly one initial value for the freezing temperature Ts consistent with the imposed 
constraints if and only if 

(4.63)        tfTp + {H - 6)ift,3(rp,0) (l + ,„z£^>) < M(0)K Vp + (fl _ 6)I^3(Tpi0). 

Condition (4.63) is well defined by virtue of (4.18). 
In particular, we find: 

(4-64)        kfTp + (H - b)LPir3(Tp,0) (i + PwL^^j = kf9(0) se e solo se TS(Q) = Tp. 

Putting together (4.59) and (4.63) and e defining Tp as in (4.37), we achieve (4.35) and 
we conclude the case ii)b. 

We remark that, by the definition of Tp and by (4.46), we have 

(4.65)        Ts(0)>g(0). 

From (4.60) we deduce also that if (4.39) holds, no initial value rs(0) is suitable in order 

to have (4.12) (computed for t = 0) satisfied. Thus, also the case ii)c is proved. 
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Remark 4.2. Since dr(Tp(h))/dh>0, we see that if h(t) is increasing (decreasing), the 

temperature Tp decreases (increases). 

Our next aim is to disuss the solvability of equation (4.20). 

We will assume from now on that condition (4.36) is satisfied, otherwise the initial data 

do not allow to get solutions consistent with the prescribed constraints. 

We consider at first the simper case in which the boundary temperatures are constant: 

(4.66) h(t) = h>0,   g(t) = g<0. 

We remark that, in that case, the functions <pr and f3 do not depend explicitly on time 

and the equation (4.20) reduces to 

(for simplicity of notation, we omit the second argument of the functions tply <p3 e <p; 

moreover, the apex for <p denotes the derivative with respect to Ts). 

Integrating (4.67), one gets 

Ts(t) 

(«8) /gg^=-, 
Ts(0) 

We compute explicitly <p'(s) making use of (4.19): 

where * is defined by (4.54). 

From the definition of <p3. we have: 

k   (s) 
f3(s) < 0, <p'3(s) = -YLf > °    for s < 0 

Furthermore: 
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rP(s) + H-b>0  per s<Tff,    tf(8)<0  for Tp < s < 0. 

Thus, since Tm > g (see (4.46)), one finds 

(4.70) p'(«)> 0    per * € [Tp,rJ 

where rp = m«:{rprm}. 

By virtue of proposition 4.1, T5(0) belongs to the interval [r„rj, if the initial data are 

cons1Stent (that is if (4.36) holds). Thus, we have ^(T5(0)) > 0, and the equality holds if 
and only if Ts(0) = Ta. 

Moreover, since „lW > 0, ^(s) > 0 for Tp<s<T^ we see that the function inside the 

integral in (4.68) is strictly positive, then Ts(t) is increasing, as long as Ts(t) < T„. 

From (4.67) we deduce that Ts{t) can not have an asymptotic value i< T<7, "because 

f2{s)   vanishes   only   for   8 = Ttr.   Consequently,   the   solution   Ts(t)   of   (4.67)   tends 

monotonically to T„, in a finite or infinite time ^  accordind to the fact that the 

integral m (4.68) tends to a finite or infinite value, respectively (notice that for s = T 

the denominator of the function in the integral vanishes, while the numerator achieves I 

finite negative value). If too < oo, we expect a melting process for t > ioo. 

If t^ = oo, that is 

-oo 

then the solution of (Stmp) + (C) + (A) (equations (4.1)-(4.10)) tends to stationary values 
ehich we are going to describe. 

The final height of the soil H^ is achieved from (4.19): 

(4-72) Hoo = H + zf-b 

where^ = ,r(*oe) = 6 + ]^^ = jF.i(r<r). 

The thickness of the frozen frznge changes with respect to time according to the formula 
(4.1): 
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I    kff(j])dri 

(4.73)        b-zF(t) = 0 
LPiVsiTsit))     ■ 

derivating (4.73), one finds: 

(474)   iF(t)=(^wTs(,)>(>- 
Therefore, the thickness of the frozen fringe decrases, but the isotherm line z = zF(t) 

does not touch the base of the lens, since 6 > zF(t). 

The final thickness of the frozen fringe is given by 

/   kff(f])dr] 

(4.75)        .y^j^.-O-j-j. 

Finally, the water flux qw satisfies 

t-»oo 

We conclude by remarking that  the temperature Tp defined by (4.67)  is constant, 

because of (4.66); so, Tp = Tp(0). Hence, condition (4.22) is surely verified at ant time 
t e [O^oo), since Ts(0) > Tp and Ts{t) is increasing. 

We examine now the general case in which h and g depend on time. 

Let us write explicitly the differential equation (4.20), taking into account that the 

formula (4.69) can be used to compute the partial derivative —*™ : 
8TS 

f2(Ts(t)) _ (4-76) ~ <Pi(Ts(t),t) = Wi(TsW,*)Ts{i) + W2(Ts(t),t)g(t) + W3(Ts(t),t)h(t) 

where 

W(ct)- kf{H-b)             ((    kJf{s)        m8yt)             1              \                      \ 
lK,) LPi<p3(s,t)(r!>(s,t) + H- b){[bLPi<p3(s,t) +     ds      ^(s,t) + (H -b))^> ~ S> + l j 

kf(H-b) 

W3(s,t) 

WJs t) - kf{ti-b) I  2l'J"      LPi      <p3(8,t)Ms,t) + H-b) 

g(t)-s (4>{s,t) + H-b ti>(s,t) 

(v>s(8,t)W,t) + H-b)f<        bLp' *W*i(V) 
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The function rp(s,t) is defined as in (4.54): 

(4.77)        *.,*) = (* - 6)       <$f)      . 

Obviously, Wl(s,t) coincide with ^(.) in the examinated case A and , constant 

The initial condition r5(0) for the differential equation (4.76) is achieved from (4 21) 

winch has exactly one solution r5(0) > Tp (see (4.37)), by virtue of proposition 4 1 

Let us assume the validity of the following hypothesis which is absolutely not restrictive 
for the generality of our analysis: 

(4.78) sup    h{t) = h <oo 
t>o 

We define 

(4.79) Tp = Tp(h) 

where Tp satisfies the equation (4.67). 

PROPOSITION   4.2.    Assume   that   (4.78)    holds.    If   the   functions   kff{s),    ^ 

K,{s)eC (-oo,0L h{t), tfOeCfyoo) and if the initial data fulfil condition (4.36), then 
there  exists  an interval of time lot,)  where (dA7fA  h„« ■ i .■ j  uuuc yv,if)  wnere (4.4.(b)  has a unique solution Ts(0)  in 
PpW'TJ, where Tp(h) is defined by (4.79) and Ta by (4.34). 
Dim. 

From (4.36) we have (see remark 4.2): 

T<r>Ts(0)>Tp(h(0))>Tp(h). 

We introduce now the function 

(4-80)      WM = -w^ (^+.Mt) + WMW). 

Computing ÖW(s,tyds, one can easily check that W(s,t} 6 C^T^TJ, on the ground of 
the assumed hypotheses for kff(s), Kl(s), *,(.), h(t) e g{t) and of the estimateg 
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(4.81) 
Ptb 

_ / tu 
J    *i (n) 

Tp(h) 

drj 

Pw
Ko Tp(h) 

kJl - I    kff(n)dr} 

Pib 

<<Pl(s,t)<-r-j7- 
*-J   t 

kff(v) 
(v) 

■dr) 

~ j    kjf{v)dr, 

(4.82) 

/      T. 

LPib 

( 

- J   kff(rl)dT]   < <P3(s,t) < --L    kuh(t) - j      kJf(r))dT) 

V    o / ' \ o 

Tp(h) 

By virtue of the local existence and uniqueness theorem for ordinary differential 

equations, we conclude that there exists a finite time t* > 0 such that (4.76) has exactly 

one solution Ts(t) with the initial datum Ts(0) and whose graphic is contained in the 

compact set [0,tf] x [Tp(/i),Tj.        D 

Once (4.76) has been integrated, we can compute the boundaries zF(t) and zT{t) from 

(4.12) and (4.19), respectively. The water flux is given by 

uo W2(
Ts(0) 

The height of the soil T(t) verifies also the formula 

t 
(4.83)        *n 

i 

n(t) = H-J 
0 

V2{Ts{r)) 

fi(T. 
-dr. 

S\' >■>' 

Finally, the water pressure pw is given by (1.28a). 

We are going now to check the sign of the coefficients W{, i = 1,2,3,   in equation (4.76). 

PROPOSITION4.3. We have: 

(4.84) W^t) > 0     for Tp(h(t)) < s < 0, * > 0 

(4.85) W2(s,t) < 0    for s < T^ t > 0 

(4.86) W3(s,t) < 0     for g(t) < s < T^ 

where Tp(h(t)) fulfils (4.25) at each time t. 

Dim. 

(4.85) comes from (4.18), (4.40) and (4.41). 
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Moreover, (4.84) is proved by remarking that 

dMs.t) 

wheretf(s) is defined by (4.54) and by recalling (4.18), (4.55), (4.57). 

Let us show now (4.86). 

If we derivate (4.15) with respect to s, we find: 

(4 87)        fyifa*) _ Pibkff(s) 
ds     ~   p Kn 

]       / W) ~ J kff(r,)dr, 
V o 

Since K^s) is increasing and A'j(O) = K0, it follows that ^~ < 0 for 5 < 0, t > 0. 

Therefore: 

<Pi(s,t) < <Pi(0,t) = -^_ for s < 0, t > 0 

and consequently 

and (4.86) is thus proved Q 

PROPOSITION 4.4. imme *&a* r5(<) Ü solution of (4.76), Ts(<) e [Tp(Ä),TJ; ifcen, /or 

eac^ iime t e [0,ty] we /wive Ts(t) > g(t). 

Dim. Call 

*a = inf{te[0,tf):Ts(t)<g(t)}. 

By  (4.36)  we see that  T5(0) >*(<));  hence  ta > 0.  By the definition of inf we have 
Ts(U = 9{ta) and T5(t) > <,(*) whenever t € [o,ta). it follows that 
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(4.88) ts(ta)<g(ta). 

By the definition of the functions W-y, W2 and W3 one easily finds: 

Wt{Ts{ta),ta) = - W2(Ts(ta),ta),       W3(Ts(ta),ta) = 0. 

Therefore: 

(4-89)    " $$M =' wM*** - *'•>) 
Suppose, contrary to our claim, that Ts{ta) < Ta. In that case, we would have that the 

left-hand quantity in (4.89) is strictly positive (see (4.40) and (4.41)), while the right- 

hand one is non positive, due to (4.88) and to proposition 4.3. Thus, we would obtain a 

contradiction. If Ts(ta) = Ta, the left-hand side of (4.89) vanishes, but we can conclude 

as in the previous case by considering times t close to ta, t<ta (in (4.88) holds the strict 

inequality, for such as times).     D 

Let us consider now the maximal interval where the solution Ts(t) of (4.76) is defined, 

in the sense of proposition 4.2; we keep on calling iy the right boundary of the time 

interval. 

PROPOSITION 4.5. Under the same assumptions as in proposition 4.2, the solution 

Ts(t) o/(4.76) satisfies one and only one of the following possibilities: 

1) Ts(tf) = TV and Ts(t) > Tp(h(t)) V* e [0,^]; 

2) 3 tt e (0,<y) such that Ts(^) < T (A^)); 

3)Tp(t)<Ts(t)<T(r    V*>0. 

Dim. It suffices to take into account propositions 4.3, 4.4 and recalling that the 

maximal solution can not be contained in any compact set which is properly contained 

infO^xfr^Tj. D 

Let us comment the three possibilities. 
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In the case 1), the solution Ts(t) reaches the value Ta and the water flux 9w vanishes at 

that temperature. For t > tf condition (4.24) is violated and a melting process occurs. 

In the case 2), by the continuity of Ts(t) and by the estimate Tp(h) < Tp(h(0)) < Ts(0), 

there exists a time t2 such that Ts(t2) = Tp(h(t2)). The solution Ts(t) cal be accepted 

only for t < t2, since for t> t2 the water pressure gradient at the base of the ice lens 

becomes negative. It is to be expected that for * > t2 a process frost penetration will take 
place. 

The case 3) occurs when tf = oo and the solution Ts(t) remains bounded by denoted 

values. We have already met with this possibility, when the temperatures h and g are 

constant and the integral defined in (4.68) verifies (4.71). The solution Ts(t) tends 

monotonically to Ta. However, other asymptotic values for the solution Ts(t) are 

possible, in the case tf = oo: as an istance, we can choose in (4.76) h constant (in that 

case Wx and W2 don't depend on time explicitly) and g(0) such that (4.35) holds. Once 
the initial value Ts(0) is calculated by (4.21), we define 

(4.90) g(t) = g(0) ,   ^(Ts(0)) 

It is easily seen that the solution of (4.76) is Ts(t) = T (0). 

Let us now deal with the following question: how the boundary temperatures h(t), 9(t) 

has to be chosen in order to discriminate the three possibilities just described? 

For this purpose, we state the following results (propositions 4.6 and 4.7), which allow 

us to answer the question just introduced at least in special cases. 

PROPOSITION 4.6. Let assumptions stated in proposition 4.2 hold.  Then, if h{t) and 

9(t)  are non decreasing,  then the solution Ts(t) of (4.4.76) is    strictly increasing for 

0<t<tfand it reaches in a finite time or asymptotically the temperature T„. 
If h(t) and g(t) are non increasing and 

(g(t)) +(A(<))2>o,    o<t<tf, 

thenTs(t)<T<T. 

Dim. Assume that 
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(4.91) g(t) > 0, h(t) > 0. 

By virtue of (4.91), the temperature Tp(h(t)) is non increasing (see remark 4.2). 

On the other hand, by propositions 4.3 and 4.4 and by (4.40), (4.41), we see that the 

function W defined by (4.80) verifies at each time t such that the solution Ts(t) of (4.76) 

exists 

(4.92) W(Ts(t),t) > 0,     0<t<tf 

it   follows   that   Ts(t)   is   non   decreasing.   Since   Ts(0) > Tp(h(0))   and   T (h(t))  is  non 

increasing, we obtain 

(4.93) Ts(t)>Tp(h(t)). 

Thus,   it   is   not   possible   that   the   second   possibility   of   proposition   4.5   occurs. 

Furthermore, from equation  (4.76)  we deduce that the solution Ts(t) can not have 

asymptotic  values  lower  than  the  temperature  T^.  it  may  be  concluded  that   the 

temperature Ts(i) reaches (in a finite or infinite time)   the value Ta. 

We show now that Ts(t) is strictly increasing for 0 < t < t.. 

The equality in (4.92) holds if and only if Ts(r) = Tff, g(r) = 0, h(r) = 0, for some r e [0,t/]. 

Since Ts(t) is the maximal solution, it must be r = tp hence 

fs(t) = W(Ts(t),t) > 0,     for 0 < t < tf. 

Let us prove now that, keeping the assumption (4.91),     the solution Ts(t) has the 

following property: 

TS(1) > T°s(t), 0<t<tf 

where T^t) is the maximal solution of (4.76), defined in [0,t°f),   obtained by taking the 

boundary temperatures as 

(4.94) h°(t) = h(Q),g°(t)=g(Q). 
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The solutions Ts(t) and T°s(t) satisfy, respectively: 

ts(t) = W(Ts(t),t) 

T°S(t) = W0(T°s(t)) 

where W(s,t) is defined by (4.80) while W0(s) = -y»2(«)/^(Ä)^(«) (see (4.67)). 

For the sake of clearness, we recall that the functions <p, ^ with just one argument are 

related with the examinated case h and g constant. 

We remark that the initial datum, that is the solution of (4.21), is the same for both the 

problems (so T5(0) = T°s(t)), by  virtue of (4.94). 

Let us integrate both the differential equations in a interval where both the solution 
exist: 

Ts(t) T°s(t) 

j ww)dy=I ^ki)dy = t- 
TS(0) T5(0) 

and write explicitly W and W0: 

W°(y)= 1—fM (V) Wx{y) n(yY 

By assumption (4.91), proposition 4.3 and (4.93),  we get 

(4.95) - W2(y,t)g(t) - W3(y,t)h(t) > 0 

On the other hand, from the definition of W{, i = 1,2,3 and keeping in mind (4.91) once 

again, it follows immediately that, for each time such that both the solutions of the two 
problems exist, it is 

(4.96)        ^l<o,^l<o 
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We conclude that W(y,t) > W°(y); therefore Ts{t) > T%(t). 

Roughly speaking, we may say that, under the same initial condition T5(0), the 

increasing boundary temperatures "bring" the solution Ts(t) to the value Ta in a shorter 

time with respect to the case when the boundary temperatures are settled at the values 

A(0), 9(0). 

PROPOSITIONS. Ifh(t) andg(t) satisfy the conditions 

(4.96) g{t) < 0, h(t) < 0, (g(t))2 + (h(t))2 > 0,      0 < t, 

then Ts(t) < T0. 

Dim. Assume that (4.96) holds. If there existed are [0,tf] with the property TS(T) = TCT, 

we would have fs(r) > 0. By propositions 4.3, 4.4 and assumption (4.96), we would have 

W(TS(T),T) < 0, where W is defined by (4.80) and we would obtain a contradiction.     □ 

the example (4.90) shows that, even if the temperatures h and g are non increasing (in 

the example the temperature g is really decreasing in a linear way), the temperature 

Ts(t) is not necessarily decreasing: the term in the left-hand side if equality (4.76) is 

positive, while in (4.95) it has the opposite sign. In qualitative terms, we can say that, if 

g(t) decreases quickly, the temperature Ts(t) reaches (by decreasing) the value T (h(r)) 

for some r e (0,tf) only if g(t) decreases rapidly enough. Moreover, when h(t) decreases, 

the temperature Tp(h(t)) increases. 

Let us give now the following example. 

We choose h(t) = h0, where h0 is a positive constant and ^(0) is taken such that (4.36) 

holds. By means of (4.21) we calculate Ts(0) and we define: 

/(*) = at + T5(0),      a < 0. 

Since   h  is     constant,   the  temperature  Tp  which   satisfies   (4.25)   is   also  constant; 

moreover, the functions W2 and <px don't depend explicitly on time. 

It is a simple matter to find a and g(t) such that 

(4.97)    /(„ =. > wum) = - w^mjf^)+wjjwm) 
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Inequality (4.97) means essentially that g(t) must decrease rapidly enough 

The solution of (4.76) that is achieved by imposing the boundary temperatures h0 and 

M (where 9{t) verifies (4.97)) keeps below the straight line /(,). The temperature TJt) 

goes necessarily down the vallue T#0) and the water pressure gradient at the base of 
the lens becomes negative. 

Owing to condition (4.22), the solution describing the process of lens formation can be 
accepted only up to the time t* when Ts(t*) = T (A ). 

4.2 Frost penetration 

In this section we wiil look for solutions of (Stmp) + (C) + (A) (eqq.  (4.1)-(4.1)) which 

describe the process of frost penetration; since it must holds (see par. 4.1.7) 

(4.98)        i5(t)<0, 

from (4.4) and (4.7) we get 

(4-99)    ^w#>>xvim 
From (4.1), (4.4) and (4.99) we deduce the equation for the temperat 

(4.100)      „ + M(0 «aPM),   f        M -Wm)kffW J +   K0    kff(Ts(t)) + J       j^5 dT) = 0. 
0 

Equation (4.100) is equivalent to 

(4-101)      v2(Ts(i)) = PwL ffig)) 9l(Tsit)!tWTsm, 

(where VlyV>2 and n are defined by (4.15)-(4.17)), or even to 

(4.102)      r(Ts(t)) = kuh(t) 

where r(s) is defined by (4.27). 

The solution of (4.102) is given by the temperature Tp{h{t)) defined by (4.25). Therefore, 
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we assume that the temperature Tv verifying (4.34) exists, otherwise (4.102) has no 

solution (see lemma (4.25)). 

Formally, once (4.102) has been solved, the freezing temperature T5, which depends on 

time t only through the boundary temperature h(t), is a known function. 

Writing qw(t) and zF(t) in terms of zs(t) and zT(i) by means of the formulas (4.1), (4.4) 

and (4.99), one finds: 

(4-103) ^=-TMmLp^iTsitM^f) 
(4.104)      zF(t) = 7(t)zs(t) 

with 

kuh{t) 
(4.105)      T(t) = - Ts(t) 

kuh(t) - j       kff(l)dri 

we have 0 < y < 1, since if Ts(t) is the solution (4.100), it must be Ts(t) < 0. 

Substituting (4.103) and (4.104) in (4.2) and in (4.4.3), we get the following set of 

ordinary differential equations, where the unknown quantities are the boundaries zs(t) 

and zT(t): 

, m_ 1 9(t)-Ts(t)     PwLK2(Ts(t)) + kff(Ts(t)) 
Zs(t) ~ (l-»s)epwL HT(t)-zs(t) kJ^W) bLW3(Ts(t),t) J^ 

(i)_
kf(Pi-Pj 9(.t)-Ts(t)     bLPt<p3(Ts(t),t) 

PiPut     *r(<)-*sW    PiPwLkff(Ts(t)) 

+ (Pi-Pw)kff(Ts(t)))l^(r) 

The initial conditions are given by (4.6): 

z5(0) = 6, zr(0) = H>b. 

By means of the definiton of the variables 
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x(t) = zs(t), y(t) = zT(t) - zs(t) 

we find the following equivalent differential system: 

(*F)   { 

{t-Mt).B{t) 

■ + - y 

where 

B(t) = 
C1 - "s)ePwL 

C(i 

D{t) 

=     {p^LK2JTs(t)) + (Pi ~ Pjkff(Ts(t))}(l - us)e - Pi{kff{Ts(t)) + A>w£g2(rs(Q)} 
" PiPw^-^s)kfI(Ts(t)) ■ 5 

x bPi<P3{Ts{t),t) = A(t)((l - „s)e - 1) + 6*»3(T5(t),<) 

^to-^(0){(i-^(P,-.J-4   *,(,(«) - Ts(t))(Pt - Pw) 
PiPwLe(l - vs) PiPwL{l-us) BW 

The initial condition for SF are 

(4.106)      x(0) = b,y(0) = E-b 

Let us now discuss the signs of the just defined coefficients. From (4.40) we obtain: 

(4.107)      A(t) > 0, C(t) < 0    fors<0, * > 0. 

Moreover, noticing that ((1 -us)e{pt-PJ -p.) < 0 (this is true 
we have: 

even in the case pw < Pi), 
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(4.108)       B(t) < 0, D(t) > 0  for    g(t) < Ts(t). 

Analogously eith the case of lens formation, we will deal first the problem to check in 

which cases the initial data are consistent with the prescribed conditions (4.10), (4.11), 

(4.98). 

Under the assumption  (4.34), which is assumed to be satisfied, we know that the 

equation (4.102) has one  solution for each fixed time t. 

Let us call to shorten notation Tp(h(Q)) = Tp(0) and state the following 

PROPOSITION 4.8. The initial temperature Ts(0) = Tp(0), solution of (4.102) calculated 

for t — Q is consistent with (4.10), (4.11): 

0 < zF(t) < zs(t) < zT(t), qjt) > 0 

and (4.4.98) if and only if 

(4.109) kfg(0) < kfTp(0) + {H- b)LPi<p3(Tp(0)) (l + pwL^^ 

Dim. 

Assume that (4.109) holds. 

From (SF) we get 

(4.110) *(0)- — + w-b -{l_KTsm>Pw[      L{H_b)  

PwLK2(Ts(0)) + kff(Ts(0)) \ 
 epJff(Ts(0)) ^(r5(0),0)J < 0. 

Hence, condition (4.98) is fulfilled for t = 0. 

Condition (4.10) is obviously satisfied for t = 0 (see (4.104)). 

Furthermore,  the solution of (4.102) must benegative; thus, from  (4.103)  and from 

(4.40) we see that ^(0) > 0, that is (4.11) for t = 0. 

On the other hand, if (4.109) were not true, from (4.110) we would find zs (0) > 0, 

contrary to condition (4.98). D 

Keeping in mind (4.98) and (4.10), we see that the solution (x(t), y(t)) of (SF) must 
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verify: 

(4.111) i(t)<o, 

(4.112) X{t) > 0, y(t) > 0. 

Condition (4.11) is certainly fulfilled if (4.11) holds (see (4.40) and (4.103)). 

Generalizing (4.110) to any time t and taking into account the equation (4.102), we see 
that (4.111) is equivalent to 

(4.113)      kfg(t) < kjTpm) + Mt) - zs{t))LPtV3{Tp{Km) (l + ,,ÄW) 
V kfM pW)) 

where Tp(h(t)) = Ts(t), 

or to 

(4.H4)  yw   m 
K '      *(*)        A(ty 

If Ts(t), solution of (4.102), satisfies (4.113), it must be 

(4.115) Ts(t)>g(t). 

Let us now calculate the quantity AD-BC; an easy computation shows that: 

(4.116) AlWt) - B{mt) = LPJ W)) ^Tsm)B{t). 

If Ts(t) is solution of (4.102), we get from (4.115) 

(4.117) A(t)D(t)-B(t)C(t)>0. 

In order to discuss the problem (SF), let us investigate first the easier case h and 
constant. 
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PROPOSITION 4.9. Assume h > 0 and g<0 costant and let be (4.109) verified. Then, 

there exists a time t0<oo such that (SF) has exactly one solution (x(t),y(t)) in the interval 

*e[Mo)> so that (4.111), (4.112) are satisfied for <e[0^0), while x(to) = 0. 

Dim. 

The system (SF), in the present case of constant boundary temperatures, is autonomous 

(A,B,C,D are constant), since the temperature Ts solving (4.102) is constant. 

Owing to condition (4.112), we are interested just in positive solutions (x(t):y(t)). 

By the theorem of existence and uniqueness for ordinary differential equations, we can 

say that for each pair of initial values x(0) > 0, y(0) > 0 there exists a unique solution of 

($F) at least locally. 

Consider   now   the   projections   of  the   solutions   (x(t),y(t))   on   the   quarter   of plane 

Q = {z>0,2/>0}. 

Let us write the orbits in Q in the form y = y(x). We find the differential equation 

(«18)      •(.) = £££ 

where the apex denotes the derivative with respect to x. 

Conditions (4.111), (4.112) impose that the starting point (x(0),j/(0)) has to lye in Q and 

that (4.114) evaluated for t = 0: 

(4.119) H-b s     B 
b     <     A 

must hold. 

Integrating (4.117) and taking into account of the initial conditions (4.106), one finds 

the following formula: 

(4.120)       -i/«j -Au\t) + {C-B)u(t) + D\-Clln 

where we set 

2Au(t) + c2 

2Au(t) + c3 
In 

x(t) 
+ cA 

«<"=i> 
B + C 

'X     2^4AD + (C-Bf 
= <0, 
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c2 = B-C-^4AD + (B-C)2, 

c3 = B-C + ^4AD + (B-C)\ 

c4=-\H - Au\Q) + (C-B)u(0) + D)-c.ln^^t^, 

with u(0) = Bj=b% 

We remark that c3 > 0 and that (4.117) and (4.119) yeld 

c2<2B,  -Au2(0) + (C-B)u(0) + D>0. 

Therefore, the constant c4 is well defined. 

We see that y' = 0 if and only if the point (x,y) belongs the half-straight line 

(4.121) s0 = {(x,y)eQ:y=-Dx/c}; 

moreover, »' = oo if and only if (x,y) lies on the half-straight line 

(4.122) Soo = {(x,y)eQ : y= -BX/A). 

By virtue of (4.117), the slope of sQ is greater that the slope of Soo. 

If we look for half-straight lines y = mx in Q which are orbits for the system (SF),   we 

easily see that m must verify Am* + (B-C)m-D.= 0. Such as equation has two solutions: 

m1=-g<0,m2=-||>0. 

Moreover: -^ < m, < -£. 
A       l        C 

Thus, inside the angle bounded by ,0 and by SQO there exists one straight line-orbit. 

Define the three angles 

ri = {(*»») € Q : 0 < y < - Bx/A} 
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T2 = {(x,y)eQ:-Bx/A<y< -Dx/C} 

r3 = {(*.y)€Q: y> -Dx/C}. 

It is easily seen that y' > 0 if and only if (x,y) e T2. Moreover, x < 0 if and only if (x,t/) e rx, 

y > 0 if and only if (ar,?/) eTjU T2. 

Owing to condition (4.111), we have to consider only the orbits in the angle ra, where 

x < 0, y > 0 hold. Choose an initial point P0 = (x(0),y(0)) e I\ and follow the orbit starting 

from P0. As long as the orbit remains in rl5 we have x(t) < 0, y(t) > 0. The orbit meets 

necessarily the half-straight line y = — BxjA in a finite time t = t0; at that time <0, the 

boundary zs is at the height: 

zs(t0) = be   C^ AD - BC \ c3 - 25 
2B -c9 2 '        >0. 

We have x(t0) = 0 and for <> <0 it is x(t) > 0 and condition (4.111) is violated. We will 

check later if for t = t0 a process of lens formation takes place. 0 

Once the system (SF) has been integrated,  the water flux qw can be computed by 

(4.103): 

The function 7 defined by (4.105) is constant: 

(4.123)       zF(t) = yx(t) 

with 

7 = 7^ , 0<7<1- 

^u^-  /    kff(v)d*l 

From (4.117) we deduce y(t) > 0 for <e[0,to); taking also into account (4.123), we find 

that the  condition (4.10) is also verified in the interval t e [0,t0). 

We remark that  the thickness  of the frozen soil y(t) = zT(t) - zs(t) is increasing for 



0 < t < t by virtue of (3.48). 

The height of the soil at the time t = t0 is given by 

*r(*o) = v(«o) + *(<o) = (l - j}s(*o)- 

Let   us   consider   now   the   system   (SF)   in   the   general   case   when   the   boundary 

temperatures h and , depend on time. As in the previous case, we get the temperature 

Ts from (4.102),  but in the present case Ts depend on time: in particular, if h(t) 

increases (decreases), the temperature Ts decreases (increases). 

Let us examinate once again the quarter of plane Q and especially the angle Tx{t) 
defined by 

ri(*) = {(*.») eQ: 0<j,< -B(t)x/A(t)}; 

Likewise the case h and g constant,  (4.111)  and  (4.112)  evaluated for t = 0 impose 
^o^WOj^OJJer^O), that is 

(4.124)      iL^b<_m 

Assuming that the prescribed functions kff(s), Kl(s), K2(s), h(t) and ,(*) have the same 

regularity  as  stated in proposition 4.3  and  applying the theorem  of existence and 

uniqueness for ordinary differential equations, we have that one solution (x(t),y(t)) of 

(SF) starting from P0 is defined. Consider the projection of the solution on Q (obviously, 

in the present  case the orbits are no longer of the form  (4.119)).  As long as the 

projection remains in the angle r^), whose width depends on time, the conditions 

(4.10), (4.11) and (4.98) are satisfied. Indeed, zs(t) < 0 if and only if y/x < -B(t)/A(t); 

(4.11) is trivially verified (see  (4.103)). By (4.117) and by (4.104) (4.10) is also fulfilled.' 
Let us write (4.110) in the following way: 

(4.125)      M<    *(')_ h(s(t)-Ts(t)) 

According to what we said above, the process oi frost penetration stops when and only 
when in (4.125) holds the equality for some time r: 

-85 



(4-126)      Vjri= -*W  if and only ifh{T) = 0. 

From a geometrical point of view, (4.126) holds when the projection of the solution 

(y(t),x(t)) matches the straight line y - -B(t)x/A(t), which is the upper side of the angle 

The   ratio   y(t)/x(t)   is   certainly   increasing   if   (x(t),y(t))   is   solution   of   (SF)   with 

^-(^(Ojjer^O). 

Nevertheless, the behaviour of the function F with respect to time is related to the 

profile of the boundary temperatures h(t) and g(t). 

We state the following result. 

PROPOSITION 4.10. Assume that (4.124) is verified. If F(h(t),g(t)) is finite for t>0, 

then there exists a r > 0 such that (4.126) holds. 

Dim. 

By hypothesis we have 

(4.127)      sup    -^§<oo 
t > o      Ayl) 

The projections on Q of the solutions (x(t),y(t)) of SF satisfy the equation 

(4128)    v>(x\-9^)y±J^h 1       Ö)      y{x)-A(t)y + B(t)x- 

The isocline straight line 

*oo(') = i(*,y) e Q ■ V = - B{t)xlA{i)} 

has a positive finite slope, depending on time; by the assumption (4.127), the slope of 

SQJJ) is finite. 

Condition (4.124) assures that (a;(0),t/(0))er1(0). Moreover, from (4.128) we see that the 

projection y = y(x) is decreasing with respect to x as long as (x(t),y(t)) remains in T1(i). 

On the other hand, y = y(x) can not accumulate in any point in rx(<), since thera are no 

singular points, owing to (4.16). Thus, the projection of the solution must reach in a 

finite time t = T the straight line ^(r) and X(T) — ZS(T) = 0. D 
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Remark 4.3. The result obtained by proposition 4.10 can be applied in the following 
special cases: 

0 Ä«) and g(t) are non decreasing (in particular constant): actually, the temperature 

Ts(t) is in that case non increasing and the function F is bounded by 

O)  9{t) is lower bounded: indeed, if 9(t) > -,0 > -oo, * > o, we have 

F^WOJS--^  <>0; 

K] kff(v)dr) 

.       dF(h(t),g(t))    ° 
lU) dt ^ 0: m that case F(h(t),g(t)) < F(h(0),g(0)). 

Once  (SF) has been solved,  the water flux qJt) and  the isotherm , = ^(t) can be 
achieved by means of (4.103) and (4.104), respectively. 

Arguing as in the case h and g constant, one can easily check that the conditions (4 10) 
(4.11) and (4.98) are satisfied for 0 < t < r. 

One may wonder how the boundary temperatures h and „ has to be chosen in order to 

have a process of frost penetration for any time * > 0. Remarking that if , is bounded 

mW)) is bounded, too, for any value of h(t), we may say that it is necessary that 

"*/  a(t) = - oo. 
t>0 

In qualitative terms, the just written condition corresponds to a rapid freezing process 
as we expect in a process of solely frost penetration. 

With regard to that possibility, let us give the following example. Consider, for the sake 

of convenience, * = 1 as initial time and precribe the boundary temperatures 

h(t) ~h0>0 

where 
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Since the temperature h is constant, we have that Tp, A and  C are constant (see (4.101) 

and the definition of the coefficients A, C). Furthermore, the ratio D/B does not depend 

on g(t), hence neither {BC-AD)/B does. We find g{t) < 0 by virtue of (4.117). Condition 

(4.119) is verified anyhow the constant h0 > 0 is chosen. 

The system $F has the form: 

(M 

._A,kMt)-Tp) 
x - x + y 

.    c*2(ff(<)-rp) 
y = -x+ v—- 

i(l) = 6, y(l) = J5T-6, 

where 

^((I-I'SMP.-PJ-P,) 

PiPw^i1 ~ vs) 

It easily seen that the solution of SF is 

The boundary x(t) = zs(t) tends asymptotically to the base of the soil z = 0; the velocity 

x never vanishes for all t > 1: therefore, we get a process of /ros£ penetration for each 

time < > 1 and the occurrence of the formation of an ice lens is precluded. The boundary 

y(t) is in that example positive and increasing, since from (4.117) we get 

•<"=-,V-'-A>«- 



4.3   Transition from one process to the other 

Putting together the results we stated in propositions 4.1 and 4.8, we are able to foresee, 

on the ground of the knowledge of the initial boundary temperatures A(o) e ,(0) and of 

the properties of the soil tfl(T), K2{T) and *//(T), whether a process of lens formation, 

or frost penetration or melting will occur. As a matter of fact, assuming that the 

temperature Ta defined by (4.34) and solving the equation (4.26) evaluated for * = 0 we 

find the temperature Tp(h(0)). At this point, if the condition 

kf9(.0)>kfTt, + (H-b)Lp,<p3(T<„0), 

holds, where H is the known initial heigiht of the soil, 6 the known initial position of the 

freezing front zs and ^ is   defined by (4.17), then the temperatures h and g do not give 
rise to any freezing process. 

On the contrary, if Tp = Tp(A(0)) is such that 

(4.129)     t/T, + (H_„t,.,^, + fmIWgj< hm i ^ + (B_b)L^{T^ 

then a process of lens formation will occur. 
Finally, if 

(4-130)      *,,(„) < kfTp + (ff - *)Z,^(rp,0) (l + PwL^-\ 

then a process of frost penetration will take place. 

The diagram on figure 4.7, where we put the initial temperature *(0) on the «- axis and 

the temperature ,(0) on the „-«is, exhibits  the fact  that for any pair of values 

(h(0),g(0))  chosen  on  the  quarter  of plane  h(0) > 0,   ,(0) < 0,  the  kind  of process  is 
discriminated. 
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kfg(0) 

melting 

frost penetration 

kh(o) 
u 

fig.  4.7:  the straight  line Sj  corresponds to  kfg(Q) = kjT(T + (H-b)Lpiip3{T(T,Q),  the 

curve S2 to 

kfg(0) = kjTp(h(0)) + (H- b)LPi<p3(Tp(h(0)),0){l + PwLK2(Tp(h(0)))/kff(Tp(h(0)))}. 

The SP, m  curve Siven b-v the equation kfg(0) = kfTp + (H - b)LPi<pz{T'   0) 

corresponds to Tp = Tm (see eq. (4.4.58)). The two regions that form the region of lens 

formation correspond   to the cases 1) and 2) introduced in the proof of proposition 4.1. 

90- 



We are going now to give an example of transition from one process to the other. 

We choose non decreasing boundary temperatures 

(4.131)      h(t)>0,  g(t)>0 

and we assume that for * = 0 (4.130) is verified. The process of frost penetration goes on 

up to the time r (see remark 4.3) when (4.126) holds: 

W = */W + (zT(r) ~ Zs{r))LPt7^-f3{Tp{r),r) (l + Pj^^j 

where Tp  is the solution of (4.102). 

Define b, = *5(T), H1 = zT(r). Consistently, the value b in the definition of the functions 
¥>i and <P3 has to be  replaced by bx: 

Kh{t)-KQjM 
kff(v) 

(v) 
drj 

KKt)~ j kff(r,)dr) *     V0 / 
0 

The temperature Tp(h(t)) does not depend on b, as we see from (4.26), (4.27). 

Thinking of t = r as the starting point of a second process, we notice that condition 
(4.129) holds:  more precisely, it is 

W = W*M) + (* i - *i)^3(rp(A(r)),r/l + PwL?f/(
h

h
(?l 

V kff(.Tp(KT)) 

By virtue of (4.64), the temperature Ts(r) solution of (4.21) is exactly Tp(h(r)). 

Choosing zs(t) = ZS{T) = b1 and zT(r) = Hlt we solve again the system (Stmp) + (C) + (A), in 

the same way as we described in section 4.1 and we get a first process ofTens formation. 
Notice that 

(4 132)       dPu,(z5(r),r) dpjzs(t),t) 
>0,   Or. 

Indeed, r5(r) verifies (4.67) and for t > r the temperature Ts{t) is strictly increasing by 

the assumption (4.131) (cfr. proposition 4.6), while Tp(h(t)) is non increasing (see remark 
4.2). K 
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The first equation of (4.132) guarantees that the water flux qw is continuous for i = r, as 

we see from (4.5). 

Owing to proposition 4.6 and to (4.131), the process of lens formation either stops in a 

finite time tf or tends to a stationary profile; in the first case, for t> tf a process of 

melting will occur; in the second case, the solution tends to the asymptotic values 

defined by (4.72), (4.75). 

Let us examinate now the possibility of getting the inverse process, that is from lens 

formation to frost penetration. Obviously, we have to drop the assumption (4.131) and 

choose rapid freezing profile for the boundary temperatures. Actually, it is necessary for 

the temperature T5(i), solution of (4.20), to go under T (h{t)) (cfr. case 2) in proposition 

4.5 and example (4.97)). 

For t > tf, the solution describing lens formation is meaningless: indeed, condition (4.9) 

is violated, since it would be (see remark 4.2): 

(4.133) ^^ <0, for t>tf 

where 6 represents, as usual, the base of the lens. 

Thus, the solution of (4.20) can not be accepted for t > tf. Let us look for solutions 

describing a frost penetration process for t > tf, taking t = t, as the starting time and 

imposing 

(4.134) dp^z
df

,t} = 0, for t>tf. 

The updated initial conditions are (see (4.83)): 

zs{tf) = b,    zT(tf) = H-j      (r (r),r)<fr. 
0 

In the definition of ipx and   <p3 the value for b has not to be changed, unlike the previous 

transition example,   since during the lens formation the base of the ice layer keeps at 

rest. 

Calling 

(4.135)      (qV\t), zP(t), ztf\t), zfl(t), Tif\t), p«\zs(t),t)) 
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the solution of (4.1)-(4.5) obtained by imposing (4.134) (in particular, T^(t) = Tp(h(t)), 

cfr. (4.102)), we are going to show that the boundary #>(*) can not be non-decJasing.' 
Indeed, let us denote by 

(4-136)      (,£)(*), ,g)W> ,?>(,), zp(<)) rg)(<)j ^(^(^j) 

the formal solution of (4.1)-(4.5) for * > tj obained by imposing ig>(<) s o (thus ,g>(<) s *) 

that is not a solution of (Sfmp) + (C) + (A), because (4.9) is violated (see (4.133)). 

Assume, contrary to our claim, that there exists an interval [tf,ta) such that 

(4.137) #>(<)><>, *e [*„*.). 

We have, according to (4.133): 

(4.138) rg>(<) < T\f\t) = Tp(h(t)),    t e (tf,ta). 

Furthermore, (4.12), (4.99) and (4.137) yeld 

(4-139)      ,g>(0 = 6 < ,(/)(*), z<p(t) > #)W)    < € (</j<a)> 

From (4.5), (4.99) and (4.139) we get: 

(4-140)     ,«(*)> ,W(0,    **(*,,*.)■ 

Using  (4.3),   (4.137),   (4.140)  and the comparison  theorem  for ordinary differential 
equations, one has (assume Pi < pw): 

(4.141)      #>(*)<,0>(«),     te(tf,ta). 

But (4.2), (4.138), (4.139) and (4.141) entail: 

«#(*)> ffl/}(<),     <e(VJ- 

which contradicts (4.140). We deduce that z^\t) can not be non-decreasing. 
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Besides that, we have that x(t) = z$\t), y(t) = ztf\t)-z^\t) is the solution of system (SF) 

defined in par. 4.2. From the equations of that system we easily get: 

Since (cfr. (4.117) and (4.126)) 

we can state that the solution x(t) can not oscillate infinite times so that the sign of x is 

not defined in the neighbours of tj t> tp provided that the given temperatures h and g 

are, as it is natural, piece-wise increasing or decreasing. 

According to the fact that zy\t) is not non-decreasing, as we proved, we conclude that 

zSl\t) < 0 

in a suitable interval (<y,7). 

Hence, condition (4.98) is verified and the solution (4.135) describes a frost penetration 

process. 
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